Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Radiat Biol ; 100(6): 865-874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687685

RESUMEN

PURPOSE: The dicentric chromosome assay (DCA), often referred to as the 'gold standard' in radiation dose estimation, exhibits significant challenges as a consequence of its labor-intensive nature and dependency on expert knowledge. Existing automated technologies face limitations in accurately identifying dicentric chromosomes (DCs), resulting in decreased precision for radiation dose estimation. Furthermore, in the process of identifying DCs through automatic or semi-automatic methods, the resulting distribution could demonstrate under-dispersion or over-dispersion, which results in significant deviations from the Poisson distribution. In response to these issues, we developed an algorithm that employs deep learning to automatically identify chromosomes and perform fully automatic and accurate estimation of diverse radiation doses, adhering to a Poisson distribution. MATERIALS AND METHODS: The dataset utilized for the dose estimation algorithm was generated from 30 healthy donors, with samples created across seven doses, ranging from 0 to 4 Gy. The procedure encompasses several steps: extracting images for dose estimation, counting chromosomes, and detecting DC and fragments. To accomplish these tasks, we utilize a diverse array of artificial neural networks (ANNs). The identification of DCs was accomplished using a detection mechanism that integrates both deep learning-based object detection and classification methods. Based on these detection results, dose-response curves were constructed. A dose estimation was carried out by combining a regression-based ANN with the Monte-Carlo method. RESULTS: In the process of extracting images for dose analysis and identifying DCs, an under-dispersion tendency was observed. To rectify the discrepancy, classification ANN was employed to identify the results of DC detection. This approach led to satisfaction of Poisson distribution criteria by 32 out of the initial pool of 35 data points. In the subsequent stage, dose-response curves were constructed using data from 25 donors. Data provided by the remaining five donors served in performing dose estimations, which were subsequently calibrated by incorporating a regression-based ANN. Of the 23 points, 22 fell within their respective confidence intervals at p < .05 (95%), except for those associated with doses at levels below 0.5 Gy, where accurate calculation was obstructed by numerical issues. The accuracy of dose estimation has been improved for all radiation levels, with the exception of 1 Gy. CONCLUSIONS: This study successfully demonstrates a high-precision dose estimation method across a general range up to 4 Gy through fully automated detection of DCs, adhering strictly to Poisson distribution. Incorporating multiple ANNs confirms the ability to perform fully automated radiation dose estimation. This approach is particularly advantageous in scenarios such as large-scale radiological incidents, improving operational efficiency and speeding up procedures while maintaining consistency in assessments. Moreover, it reduces potential human error and enhances the reliability of results.


Asunto(s)
Aberraciones Cromosómicas , Redes Neurales de la Computación , Dosis de Radiación , Humanos , Aberraciones Cromosómicas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Algoritmos , Distribución de Poisson , Aprendizaje Profundo
2.
Sci Rep ; 12(1): 22097, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543843

RESUMEN

The dicentric chromosome assay is the "gold standard" in biodosimetry for estimating radiation exposure. However, its large-scale deployment is limited owing to its time-consuming nature and requirement for expert reviewers. Therefore, a recently developed automated system was evaluated for the dicentric chromosome assay. A previously constructed deep learning-based automatic dose-estimation system (DLADES) was used to construct dose curves and calculate estimated doses. Blood samples from two donors were exposed to cobalt-60 gamma rays (0-4 Gy, 0.8 Gy/min). The DLADES efficiently identified monocentric and dicentric chromosomes but showed impaired recognition of complete cells with 46 chromosomes. We estimated the chromosome number of each "Accepted" sample in the DLADES and sorted similar-quality images by removing outliers using the 1.5IQR method. Eleven of the 12 data points followed Poisson distribution. Blind samples were prepared for each dose to verify the accuracy of the estimated dose generated by the curve. The estimated dose was calculated using Merkle's method. The actual dose for each sample was within the 95% confidence limits of the estimated dose. Sorting similar-quality images using chromosome numbers is crucial for the automated dicentric chromosome assay. We successfully constructed a dose-response curve and determined the estimated dose using the DLADES.


Asunto(s)
Aprendizaje Profundo , Radiometría , Humanos , Radiometría/métodos , Aberraciones Cromosómicas , Rayos gamma , Cromosomas Humanos/genética , Relación Dosis-Respuesta en la Radiación
3.
Case Rep Anesthesiol ; 2021: 3313904, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34904058

RESUMEN

INTRODUCTION: Potocki-Lupski syndrome (PTLS) is a rare disease caused by the duplication of a small segment of chromosome 17 (17p11.2). The clinical presentation of this syndrome is quite variable and includes hypotonia, failure to thrive, oropharyngeal dysphagia, developmental delay, and behavioral abnormalities. In addition, congenital heart disease, sleep apnea, and mildly dysmorphic features are common and should be considered during anesthetic management. However, because of the rarity and newness of the syndrome, there are few reports on the anesthetic care of patients with PTLS. Case Report. We report a case of a 4-year-old girl diagnosed with this syndrome who underwent general anesthesia for exotropia surgery. The patient exhibited micrognathia; a mild decrease in muscle tone; and a developmental delay in motor, speech, and cognition. She had a history of swallowing incoordination and gastroesophageal reflux. No abnormalities were found on a preoperative echocardiography. A videolaryngoscope was used for tracheal intubation, and the state of neuromuscular blockade was monitored in addition to standard monitoring. Anesthesia was maintained with sevoflurane and remifentanil. The patient recovered without any adverse events. CONCLUSION: As PTLS patients may have several malformations, preanesthetic evaluation is important. Preoperative echocardiography and cardiologic consultations are required. It is desirable to prepare for the risk of difficult airway and pulmonary aspiration. Postoperatively, close monitoring is needed to prevent airway compromise.

4.
Radiat Res ; 195(2): 163-172, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316052

RESUMEN

The interpretation of radiation dose is an important procedure for both radiological operators and persons who are exposed to background or artificial radiations. Dicentric chromosome assay (DCA) is one of the representative methods of dose estimation that discriminates the aberration in chromosomes modified by radiation. Despite the DCA-based automated radiation dose estimation methods proposed in previous studies, there are still limitations to the accuracy of dose estimation. In this study, a DCA-based automated dose estimation system using deep learning methods is proposed. The system is comprised of three stages. In the first stage, a classifier based on a deep learning technique is used for filtering the chromosome images that are not appropriate for use in distinguishing the chromosome; 99% filtering accuracy was achieved with 2,040 test images. In the second stage, the dicentric rate is evaluated by counting and identifying chromosomes based on the Feature Pyramid Network, which is one of the object detection algorithms based on deep learning architecture. The accuracies of the neural networks for counting and identifying chromosomes were estimated at over 97% and 90%, respectively. In the third stage, dose estimation is conducted using the dicentric rate and the dose-response curve. The accuracies of the system were estimated using two independent samples; absorbed doses ranging from 1- 4 Gy agreed well within a 99% confidential interval showing highest accuracy compared to those in previous studies. The goal of this study was to provide insights towards achieving complete automation of the radiation dose estimation, especially in the event of a large-scale radiation exposure incident.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Cromosomas Humanos/efectos de la radiación , Cromosomas/efectos de la radiación , Aprendizaje Profundo , Automatización , Bioensayo , Cromosomas/genética , Cromosomas Humanos/genética , Relación Dosis-Respuesta en la Radiación , Humanos , Dosis de Radiación , Exposición a la Radiación/efectos adversos
5.
PeerJ ; 8: e9101, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477835

RESUMEN

Wetland ecosystems have been globally degraded and lost due to rapid urbanization and climate change. An assessment of national scale inventory, including wetland types and conditions, is urgently required to understand the big picture of endangered wetlands, such as where they are and how they look like. We analyzed the spatial patterns of each inland wetland type (brackish wetland was included) in South Korea and the relative importance of land cover categories on wetland conditions. The wetlands were grouped into four dominant types (riverine, lake, mountain, and human-made) according to their topography. Riverine wetlands constituted the largest area (71.3%). The relative ratio of wetlands in a well-conserved condition (i.e., "A" rank) was highest in riverine wetlands (23.8%), followed by mountain wetlands (22.1%). The higher proportion of grasslands was related to a better condition ranking, but the increasing bareland area had a negative impact on wetland conditions. We also found that wetlands located near wetland protected areas tend to be in a better condition compared to remote sites. Our results further support the importance of the condition of surrounding areas for wetland conservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...