Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23796, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967302

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Linfocitos B , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/inmunología , Animales , Ratones , Humanos , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Ratones Transgénicos , Masculino , Femenino , Ratones Endogámicos C57BL , Inmunomodulación , Persona de Mediana Edad
2.
Muscle Nerve ; 69(4): 477-489, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38305586

RESUMEN

INTRODUCTION/AIMS: Genetics is an important risk factor for amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting motor neurons. Recent findings demonstrate that in addition to specific genetic mutations, structural variants caused by genetic instability can also play a causative role in ALS. Genomic instability can lead to deletions, duplications, insertions, inversions, and translocations in the genome, and these changes can sometimes lead to fusion of distinct genes into a single transcript. Gene fusion events have been studied extensively in cancer; however, they have not been thoroughly investigated in ALS. The aim of this study was to determine whether gene fusions are present in ALS. METHODS: Gene fusions were identified using STAR Fusion v1.10.0 software in bulk RNA-Seq data from human postmortem samples from publicly available data sets from Target ALS and the New York Genome Center ALS Consortium. RESULTS: We report the presence of gene fusion events in several brain regions as well as in spinal cord samples in ALS. Although most gene fusions were intra-chromosomal events between neighboring genes and present in both ALS and control samples, there was a significantly greater number of unique gene fusions in ALS compared to controls. Lastly, we identified specific gene fusions with a significant burden in ALS, that were absent from both control samples and known cancer gene fusion databases. DISCUSSION: Collectively, our findings reveal an enrichment of gene fusions in ALS and suggest that these events may be an additional genetic cause linked to ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Fusión Génica
3.
J Huntingtons Dis ; 12(3): 267-281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37694372

RESUMEN

BACKGROUND: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD postmortem brain and mouse models. OBJECTIVE: The goal of this study was to determine whether total tau and pTau levels are altered in HD. METHODS: Immunohistochemistry, cellular fractionations, and western blots were used to measure total tau and pTau levels in a large cohort of HD and control postmortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau levels in HttQ111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. RESULTS: Our results revealed that, while there was no difference in total tau or pTau levels in HD PFC compared to controls, the levels of tau phosphorylated at S396 were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, total tau or pTau levels were not altered in HttQ111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. CONCLUSIONS: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Humanos , Enfermedad de Huntington/metabolismo , Fosforilación , Serina/metabolismo , Ratones Transgénicos , Corteza Prefrontal/metabolismo , Modelos Animales de Enfermedad
4.
medRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333415

RESUMEN

Background: To date, it is still controversial whether tau phosphorylation plays a role in Huntington's disease (HD), as previous studies demonstrated either no alterations or increases in phosphorylated tau (pTau) in HD post-mortem brain and mouse models. Objectives: The goal of this study was to determine whether total tau and pTau levels are altered in HD. Methods: Immunohistochemistry, cellular fractionations, and western blots were used to measure tau and pTau levels in a large cohort of HD and control post-mortem prefrontal cortex (PFC). Furthermore, western blots were performed to assess tau, and pTau levels in HD and control isogenic embryonic stem cell (ESC)-derived cortical neurons and neuronal stem cells (NSCs). Similarly, western blots were used to assess tau and pTau in Htt Q111 and transgenic R6/2 mice. Lastly, total tau levels were assessed in HD and healthy control plasma using Quanterix Simoa assay. Results: Our results revealed that, while there was no difference in tau or pTau levels in HD PFC compared to controls, tau phosphorylated at S396 levels were increased in PFC samples from HD patients 60 years or older at time of death. Additionally, tau and pTau levels were not changed in HD ESC-derived cortical neurons and NSCs. Similarly, tau or pTau levels were not altered in Htt Q111 and transgenic R6/2 mice compared to wild-type littermates. Lastly, tau levels were not changed in plasma from a small cohort of HD patients compared to controls. Conclusion: Together these findings demonstrate that pTau-S396 levels increase significantly with age in HD PFC.

5.
Elife ; 112022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35708179

RESUMEN

Positive and negative associations acquired through olfactory experience are thought to be especially strong and long-lasting. The conserved direct olfactory sensory input to the ventral striatal olfactory tubercle (OT) and its convergence with dense dopaminergic input to the OT could underlie this privileged form of associative memory, but how this process occurs is not well understood. We imaged the activity of the two canonical types of striatal neurons, expressing D1- or D2-type dopamine receptors, in the OT at cellular resolution while mice learned odor-outcome associations ranging from aversive to rewarding. D1 and D2 neurons both responded to rewarding and aversive odors. D1 neurons in the OT robustly and bidirectionally represented odor valence, responding similarly to odors predicting similar outcomes regardless of odor identity. This valence representation persisted even in the absence of a licking response to the odors and in the absence of the outcomes, indicating a true transformation of odor sensory information by D1 OT neurons. In contrast, D2 neuronal representation of the odor-outcome associations was weaker, contingent on a licking response by the mouse, and D2 neurons were more selective for odor identity than valence. Stimulus valence coding in the OT was modality-sensitive, with separate sets of D1 neurons responding to odors and sounds predicting the same outcomes, suggesting that integration of multimodal valence information happens downstream of the OT. Our results point to distinct representation of identity and valence of odor stimuli by D1 and D2 neurons in the OT.


Asunto(s)
Señales (Psicología) , Estriado Ventral , Animales , Ratones , Neuronas/fisiología , Odorantes , Tubérculo Olfatorio/fisiología , Receptores de Dopamina D2/metabolismo , Olfato/fisiología , Estriado Ventral/metabolismo
6.
Mol Neurobiol ; 59(1): 683-702, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34757590

RESUMEN

Understanding the mechanisms underlying amyotrophic lateral sclerosis (ALS) is crucial for the development of new therapies. Previous studies have demonstrated that mitochondrial dysfunction is a key pathogenetic event in ALS. Interestingly, studies in Alzheimer's disease (AD) post-mortem brain and animal models link alterations in mitochondrial function to interactions between hyperphosphorylated tau and dynamin-related protein 1 (DRP1), the GTPase involved in mitochondrial fission. Recent evidence suggest that tau may be involved in ALS pathogenesis, therefore, we sought to determine whether hyperphosphorylated tau may lead to mitochondrial fragmentation and dysfunction in ALS and whether reducing tau may provide a novel therapeutic approach. Our findings demonstrated that pTau-S396 is mis-localized to synapses in post-mortem motor cortex (mCTX) across ALS subtypes. Additionally, the treatment with ALS synaptoneurosomes (SNs), enriched in pTau-S396, increased oxidative stress, induced mitochondrial fragmentation, and altered mitochondrial connectivity without affecting cell survival in vitro. Furthermore, pTau-S396 interacted with DRP1, and similar to pTau-S396, DRP1 accumulated in SNs across ALS subtypes, suggesting increases in mitochondrial fragmentation in ALS. As previously reported, electron microscopy revealed a significant decrease in mitochondria density and length in ALS mCTX. Lastly, reducing tau levels with QC-01-175, a selective tau degrader, prevented ALS SNs-induced mitochondrial fragmentation and oxidative stress in vitro. Collectively, our findings suggest that increases in pTau-S396 may lead to mitochondrial fragmentation and oxidative stress in ALS and decreasing tau may provide a novel strategy to mitigate mitochondrial dysfunction in ALS. pTau-S396 mis-localizes to synapses in ALS. ALS synaptoneurosomes (SNs), enriched in pTau-S396, increase oxidative stress and induce mitochondrial fragmentation in vitro. pTau-S396 interacts with the pro-fission GTPase DRP1 in ALS. Reducing tau with a selective degrader, QC-01-175, mitigates ALS SNs-induced mitochondrial fragmentation and increases in oxidative stress in vitro.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Sinapsis/metabolismo
7.
Brain Pathol ; 32(2): e13035, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34779076

RESUMEN

Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, several studies report alterations in tau phosphorylation in both sporadic and familial ALS. Recently, we have demonstrated that phosphorylated tau at S396 (pTau-S396) is mislocalized to synapses in ALS motor cortex (mCTX) and contributes to mitochondrial dysfunction. Here, we demonstrate that while there was no overall increase in total tau, pTau-S396, and pTau-S404 in ALS post-mortem mCTX, total tau and pTau-S396 were increased in C9ORF72-ALS. Additionally, there was a significant decrease in pTau-T181 in ALS mCTX compared controls. Furthermore, we leveraged the ALS Knowledge Portal and Project MinE data sets and identified ALS-specific genetic variants across MAPT, the gene encoding tau. Lastly, assessment of cerebrospinal fluid (CSF) samples revealed a significant increase in total tau levels in bulbar-onset ALS together with a decrease in CSF pTau-T181:tau ratio in all ALS samples, as reported previously. While increases in CSF tau levels correlated with a faster disease progression as measured by the revised ALS functional rating scale (ALSFRS-R), decreases in CSF pTau-T181:tau ratio correlated with a slower disease progression, suggesting that CSF total tau and pTau-T181 ratio may serve as biomarkers of disease in ALS. Our findings highlight the potential role of pTau-T181 in ALS, as decreases in CSF pTau-T181:tau ratio may reflect the significant decrease in pTau-T181 in post-mortem mCTX. Taken together, these results indicate that tau phosphorylation is altered in ALS post-mortem mCTX as well as in CSF and, importantly, the newly described pathogenic or likely pathogenic variants identified in MAPT in this study are adjacent to T181 and S396 phosphorylation sites further highlighting the potential role of these tau functional domains in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Esclerosis Amiotrófica Lateral/genética , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Humanos , Corteza Motora/metabolismo , Fosforilación , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...