Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 954: 175877, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37356786

RESUMEN

Idiopathic hypersomnia (IH) is a chronic neurologic disorder with unknown mechanisms that result in long night-time sleep, daytime sleepiness, long non-refreshing naps, and difficult awakening presenting as sleep drunkenness. IH patients are typically diagnosed by shorter sleep latency on multiple sleep latency test (MSLT) along with long sleep time. Only symptomatic drug treatments are currently available for IH and no animal model to study it. Sleepy mice carry a splicing mutation in the Sik3 gene, leading to increased sleep time and sleep need. Here we used a mouse version of MSLT and a decay analysis of wake EEG delta power to validate the Sleepy mutant mouse as an animal model for IH. Sleepy mice had shorter sleep latency in the dark (active) phase than wild-type mice. They also showed lower decay of EEG delta density during wakefulness, possibly reflecting increased sleep inertia. These data indicate that the Sleepy mouse may have partial face validity as a mouse model for idiopathic hypersomnia. We then investigated the effect of orexin-A and the orexin receptor 2-selective agonist YNT-185 on the sleepiness symptoms of the Sleepy mouse. Intracerebroventricular orexin-A promoted wakefulness for 3 h and decreased wake EEG delta density after injection in Sleepy mice and wild-type mice. Moreover, Sleepy mice but not wild-type mice showed a sleep rebound after the orexin-A-induced wakefulness. Intraperitoneal YNT-185 promoted wakefulness for 3 h after injection in Sleepy mice, indicating the potential of using orexin agonists to treat not only orexin deficiency but hypersomnolence of various etiologies.


Asunto(s)
Trastornos de Somnolencia Excesiva , Hipersomnia Idiopática , Ratones , Animales , Orexinas/farmacología , Vigilia , Hipersomnia Idiopática/diagnóstico , Hipersomnia Idiopática/tratamiento farmacológico , Somnolencia , Trastornos de Somnolencia Excesiva/diagnóstico , Sueño
2.
Proc Natl Acad Sci U S A ; 120(11): e2218209120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877841

RESUMEN

Mammals exhibit circadian cycles of sleep and wakefulness under the control of the suprachiasmatic nucleus (SCN), such as the strong arousal phase-locked to the beginning of the dark phase in laboratory mice. Here, we demonstrate that salt-inducible kinase 3 (SIK3) deficiency in gamma-aminobutyric acid (GABA)-ergic neurons or neuromedin S (NMS)-producing neurons delayed the arousal peak phase and lengthened the behavioral circadian cycle under both 12-h light:12-h dark condition (LD) and constant dark condition (DD) without changing daily sleep amounts. In contrast, the induction of a gain-of-function mutant allele of Sik3 in GABAergic neurons exhibited advanced activity onset and a shorter circadian period. Loss of SIK3 in arginine vasopressin (AVP)-producing neurons lengthened the circadian cycle, but the arousal peak phase was similar to that in control mice. Heterozygous deficiency of histone deacetylase (HDAC) 4, a SIK3 substrate, shortened the circadian cycle, whereas mice with HDAC4 S245A, which is resistant to phosphorylation by SIK3, delayed the arousal peak phase. Phase-delayed core clock gene expressions were detected in the liver of mice lacking SIK3 in GABAergic neurons. These results suggest that the SIK3-HDAC4 pathway regulates the circadian period length and the timing of arousal through NMS-positive neurons in the SCN.


Asunto(s)
Nivel de Alerta , Histona Desacetilasas , Proteínas Serina-Treonina Quinasas , Vigilia , Animales , Ratones , Alelos , Arginina Vasopresina , Proteínas Serina-Treonina Quinasas/genética , Núcleo Supraquiasmático , Histona Desacetilasas/genética
3.
Nature ; 612(7940): 512-518, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477539

RESUMEN

Progress has been made in the elucidation of sleep and wakefulness regulation at the neurocircuit level1,2. However, the intracellular signalling pathways that regulate sleep and the neuron groups in which these intracellular mechanisms work remain largely unknown. Here, using a forward genetics approach in mice, we identify histone deacetylase 4 (HDAC4) as a sleep-regulating molecule. Haploinsufficiency of Hdac4, a substrate of salt-inducible kinase 3 (SIK3)3, increased sleep. By contrast, mice that lacked SIK3 or its upstream kinase LKB1 in neurons or with a Hdac4S245A mutation that confers resistance to phosphorylation by SIK3 showed decreased sleep. These findings indicate that LKB1-SIK3-HDAC4 constitute a signalling cascade that regulates sleep and wakefulness. We also performed targeted manipulation of SIK3 and HDAC4 in specific neurons and brain regions. This showed that SIK3 signalling in excitatory neurons located in the cerebral cortex and the hypothalamus positively regulates EEG delta power during non-rapid eye movement sleep (NREMS) and NREMS amount, respectively. A subset of transcripts biased towards synaptic functions was commonly regulated in cortical glutamatergic neurons through the expression of a gain-of-function allele of Sik3 and through sleep deprivation. These findings suggest that NREMS quantity and depth are regulated by distinct groups of excitatory neurons through common intracellular signals. This study provides a basis for linking intracellular events and circuit-level mechanisms that control NREMS.


Asunto(s)
Neuronas , Duración del Sueño , Sueño , Vigilia , Animales , Ratones , Electroencefalografía , Neuronas/metabolismo , Neuronas/fisiología , Sueño/genética , Sueño/fisiología , Privación de Sueño/genética , Vigilia/genética , Vigilia/fisiología , Transducción de Señal , Ritmo Delta , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Ácido Glutámico/metabolismo , Sueño de Onda Lenta/genética , Sueño de Onda Lenta/fisiología
4.
Front Neurosci ; 15: 739236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621154

RESUMEN

There are various sex differences in sleep/wake behaviors in mice. However, it is unclear whether there are sex differences in sleep homeostasis and arousal responses and whether gonadal hormones are involved in these sex differences. Here, we examined sleep/wake behaviors under baseline condition, after sleep deprivation by gentle handling, and arousal responses to repeated cage changes in male and female C57BL/6 mice that are hormonally intact, gonadectomized, or gonadectomized with hormone supplementation. Compared to males, females had longer wake time, shorter non-rapid eye movement sleep (NREMS) time, and longer rapid eye movement sleep (REMS) episodes. After sleep deprivation, males showed an increase in NREMS delta power, NREMS time, and REMS time, but females showed a smaller increase. Females and males showed similar arousal responses. Gonadectomy had only a modest effect on homeostatic sleep regulation in males but enhanced it in females. Gonadectomy weakened arousal response in males and females. With hormone replacement, baseline sleep in gonadectomized females was similar to that of intact females, and baseline sleep in gonadectomized males was close to that of intact males. Gonadal hormone supplementation restored arousal response in males but not in females. These results indicate that male and female mice differ in their baseline sleep-wake behavior, homeostatic sleep regulation, and arousal responses to external stimuli, which are differentially affected by reproductive hormones.

5.
iScience ; 20: 1-13, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31546102

RESUMEN

Orexins are hypothalamic neuropeptides that regulate feeding, energy expenditure, and sleep. Although orexin-deficient mice are susceptible to obesity, little is known about the roles of the orexin receptors in long-term energy metabolism. Here, we performed the metabolic characterization of orexin receptor-deficient mice. Ox1r-deficient mice were resistant to diet-induced obesity, and their food intake was similar between chow and high-fat food. Ox2r-deficient mice exhibited less energy expenditure than wild-type mice when fed a high-fat diet. Neither Ox1r-deficient nor Ox2r-deficient mice showed body weight gain similar to orexin-deficient mice. Although the presence of a running wheel suppressed diet-induced obesity in wild-type mice, the effect was weaker in orexin neuron-ablated mice. Finally, we did not detect abnormalities in brown adipose tissues of orexin-deficient mice. Thus, each orexin receptor signaling has a unique role in energy metabolism, and orexin neurons are involved in the interactive effect of diet and exercise on body weight gain.

6.
Proc Natl Acad Sci U S A ; 116(32): 16062-16067, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337678

RESUMEN

The regulatory network of genes and molecules in sleep/wakefulness remains to be elucidated. Here we describe the methodology and workflow of the dominant screening of randomly mutagenized mice and discuss theoretical basis of forward genetics research for sleep in mice. Our high-throughput screening employs electroencephalogram (EEG) and electromyogram (EMG) to stage vigilance states into a wake, rapid eye movement sleep (REMS) and non-REM sleep (NREMS). Based on their near-identical sleep/wake behavior, C57BL/6J (B6J) and C57BL/6N (B6N) are chosen as mutagenized and counter strains, respectively. The total time spent in the wake and NREMS, as well as the REMS episode duration, shows sufficient reproducibility with small coefficients of variance, indicating that these parameters are most suitable for quantitative phenotype-driven screening. Coarse linkage analysis of the quantitative trait, combined with whole-exome sequencing, can identify the gene mutation associated with sleep abnormality. Our simulations calculate the achievable LOD score as a function of the phenotype strength and the numbers of mice examined. A pedigree showing a mild decrease in total wake time resulting from a heterozygous point mutation in the Cacna1a gene is described as an example.


Asunto(s)
Pruebas Genéticas/métodos , Sueño/genética , Vigilia/genética , Animales , Canales de Calcio Tipo N/genética , Simulación por Computador , Cruzamientos Genéticos , Trastornos de Somnolencia Excesiva/genética , Etilnitrosourea , Femenino , Genes Dominantes , Homocigoto , Escala de Lod , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Linaje , Fenotipo , Reproducibilidad de los Resultados
7.
Nature ; 539(7629): 378-383, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27806374

RESUMEN

Sleep is conserved from invertebrates to vertebrates, and is tightly regulated in a homeostatic manner. The molecular and cellular mechanisms that determine the amount of rapid eye movement sleep (REMS) and non-REMS (NREMS) remain unknown. Here we identify two dominant mutations that affect sleep and wakefulness by using an electroencephalogram/electromyogram-based screen of randomly mutagenized mice. A splicing mutation in the Sik3 protein kinase gene causes a profound decrease in total wake time, owing to an increase in inherent sleep need. Sleep deprivation affects phosphorylation of regulatory sites on the kinase, suggesting a role for SIK3 in the homeostatic regulation of sleep amount. Sik3 orthologues also regulate sleep in fruitflies and roundworms. A missense, gain-of-function mutation in the sodium leak channel NALCN reduces the total amount and episode duration of REMS, apparently by increasing the excitability of REMS-inhibiting neurons. Our results substantiate the use of a forward-genetics approach for studying sleep behaviours in mice, and demonstrate the role of SIK3 and NALCN in regulating the amount of NREMS and REMS, respectively.


Asunto(s)
Canales Iónicos/genética , Mutagénesis , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Serina-Treonina Quinasas/genética , Sueño/genética , Sueño/fisiología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Electroencefalografía , Electromiografía , Homeostasis/genética , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas de la Membrana , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN/genética , Distribución Aleatoria , Privación de Sueño , Sueño REM/genética , Sueño REM/fisiología , Factores de Tiempo , Vigilia/genética , Vigilia/fisiología
8.
Sci Rep ; 6: 32453, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27585985

RESUMEN

The discovery of leptin substantiated the usefulness of a forward genetic approach in elucidating the molecular network regulating energy metabolism. However, no successful dominant screening for obesity has been reported, which may be due to the influence of quantitative trait loci between the screening and counter strains and the low fertility of obese mice. Here, we performed a dominant screening for obesity using C57BL/6 substrains, C57BL/6J and C57BL/6N, with the routine use of in vitro fertilization. The screening of more than 5000 mutagenized mice established two obese pedigrees in which single nucleotide substitutions in Mc4r and Sim1 genes were identified through whole-exome sequencing. The mutation in the Mc4r gene produces a premature stop codon, and the mutant SIM1 protein lacks transcriptional activity, showing that the haploinsufficiency of SIM1 and MC4R results in obesity. We further examined the hypothalamic neuropeptide expressions in the mutant pedigrees and mice with diet-induced obesity, which showed that each obesity mouse model has distinct neuropeptide expression profiles. This forward genetic screening scheme is useful and applicable to any research field in which mouse models work.


Asunto(s)
Genes Dominantes , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Mutación/genética , Obesidad/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Mapeo Cromosómico , Dieta , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Luciferasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Neuropéptidos/genética , Neuropéptidos/metabolismo , Obesidad/metabolismo , Obesidad/patología , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Receptor de Melanocortina Tipo 4/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...