Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(45): 10293-10299, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37942984

RESUMEN

Nanoscale bubbles form inevitably during the transfer of two-dimensional (2D) materials on a target substrate due to their van der Waals interaction. Despite a large number of studies based on nanobubble structures with localized strain, the dielectric constant (κ) in nanobubbles of MoS2 is poorly understood. Here, we report κ measurements for nanobubbles on MoS2 by probing the polarization forces based on electrostatic force microscopy. Remarkably, higher κ values of 6-8 independent of the nanobubble size are observed for the nanobubbles as compared to flat regions with a κ of ≈3. We find that the charge carrier increase owing to the strain-induced bandgap reduction is responsible for the enhanced κ of the nanobubbles, where the measured κ is in good agreement with the calculations based on the Clausius-Mossotti relation. Our results provide fundamental information about the strain-induced local dielectric properties of 2D materials and a guide for the design and fabrication of high-performance optoelectrical devices based on 2D materials.

2.
J Anim Sci Technol ; 65(3): 627-637, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37332278

RESUMEN

As the population and income levels rise, meat consumption steadily increases annually. However, the number of farms and farmers producing meat decrease during the same period, reducing meat sufficiency. Information and Communications Technology (ICT) has begun to be applied to reduce labor and production costs of livestock farms and improve productivity. This technology can be used for rapid pregnancy diagnosis of sows; the location and size of the gestation sacs of sows are directly related to the productivity of the farm. In this study, a system proposes to determine the number of gestation sacs of sows from ultrasound images. The system used the YOLOv7-E6E model, changing the activation function from sigmoid-weighted linear unit (SiLU) to a multi-activation function (SiLU + Mish). Also, the upsampling method was modified from nearest to bicubic to improve performance. The model trained with the original model using the original data achieved mean average precision of 86.3%. When the proposed multi-activation function, upsampling, and AutoAugment were applied, the performance improved by 0.3%, 0.9%, and 0.9%, respectively. When all three proposed methods were simultaneously applied, a significant performance improvement of 3.5% to 89.8% was achieved.

3.
Sci Rep ; 13(1): 10415, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369833

RESUMEN

One of the key aspects of the diagnosis and treatment of atypical femoral fractures is the early detection of incomplete fractures and the prevention of their progression to complete fractures. However, an incomplete atypical femoral fracture can be misdiagnosed as a normal lesion by both primary care physicians and orthopedic surgeons; expert consultation is needed for accurate diagnosis. To overcome this limitation, we developed a transfer learning-based ensemble model to detect and localize fractures. A total of 1050 radiographs, including 100 incomplete fractures, were preprocessed by applying a Sobel filter. Six models (EfficientNet B5, B6, B7, DenseNet 121, MobileNet V1, and V2) were selected for transfer learning. We then composed two ensemble models; the first was based on the three models having the highest accuracy, and the second was based on the five models having the highest accuracy. The area under the curve (AUC) of the case that used the three most accurate models was the highest at 0.998. This study demonstrates that an ensemble of transfer-learning-based models can accurately classify and detect fractures, even in an imbalanced dataset. This artificial intelligence (AI)-assisted diagnostic application could support decision-making and reduce the workload of clinicians with its high speed and accuracy.


Asunto(s)
Inteligencia Artificial , Fracturas del Fémur , Humanos , Radiografía , Área Bajo la Curva , Fracturas del Fémur/diagnóstico por imagen
4.
Biochem Biophys Res Commun ; 668: 19-26, 2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37235915

RESUMEN

Nanoplastics (NPs) are potentially toxic and pose a health risk as they can induce an inflammatory response and oxidative stress at cellular and organismal levels. Humans can be exposed to NPs through various routes, including ingestion, inhalation, and skin contact. Notably, uptake into the body via inhalation could result in brain accumulation, which may occur directly across the blood-brain barrier or via other routes. NPs that accumulate in the brain may be endocytosed into neurons, inducing neurotoxicity. Recently, we demonstrated that exposure to polystyrene (PS)-NPs reduces the viability of neurons. We have also reported that inhibiting the retrograde transport of PS-NPs by histone deacetylase 6 (HDAC6) prevents their intracellular accumulation and promotes their export in mouse embryonic fibroblasts. However, whether HDAC6 inhibition can improve neuronal viability by increasing exocytosis of PS-NPs from neurons remains unknown. In this study, mice were intranasally administered fluorescent PS-NPs (PS-YG), which accumulated in the brain and showed potential neurotoxic effects. In cultured neurons, the HDAC6 inhibitor ACY-1215 reduced the fluorescence signal detected from PS-YG, suggesting that the removal of PS-YG from neurons was promoted. Therefore, these results suggest that blocking the retrograde transport of PS-NPs using an HDAC6 inhibitor can alleviate the neurotoxic effects of PS-NPs that enter the brain.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Poliestirenos/toxicidad , Microplásticos , Nanopartículas/toxicidad , Fibroblastos , Neuronas
5.
J Anim Sci Technol ; 65(2): 365-376, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37093914

RESUMEN

Pig breeding management directly contributes to the profitability of pig farms, and pregnancy diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in sows is emphasized, and various studies have been conducted in this area. We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the ultrasonography, which is easily affected by noise from the surrounding environments. Both the original and noise added ultrasound images of sows were tested together to determine the suitability of the proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving its robustness against noise.

6.
Phys Eng Sci Med ; 46(1): 265-277, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36625995

RESUMEN

The complex shape of the foot, consisting of 26 bones, variable ligaments, tendons, and muscles leads to misdiagnosis of foot fractures. Despite the introduction of artificial intelligence (AI) to diagnose fractures, the accuracy of foot fracture diagnosis is lower than that of conventional methods. We developed an AI assistant system that assists with consistent diagnosis and helps interns or non-experts improve their diagnosis of foot fractures, and compared the effectiveness of the AI assistance on various groups with different proficiency. Contrast-limited adaptive histogram equalization was used to improve the visibility of original radiographs and data augmentation was applied to prevent overfitting. Preprocessed radiographs were fed to an ensemble model of a transfer learning-based convolutional neural network (CNN) that was developed for foot fracture detection with three models: InceptionResNetV2, MobilenetV1, and ResNet152V2. After training the model, score class activation mapping was applied to visualize the fracture based on the model prediction. The prediction result was evaluated by the receiver operating characteristic (ROC) curve and its area under the curve (AUC), and the F1-Score. Regarding the test set, the ensemble model exhibited better classification ability (F1-Score: 0.837, AUC: 0.95, Accuracy: 86.1%) than other single models that showed an accuracy of 82.4%. With AI assistance for the orthopedic fellow, resident, intern, and student group, the accuracy of each group improved by 3.75%, 7.25%, 6.25%, and 7% respectively and diagnosis time was reduced by 21.9%, 14.7%, 24.4%, and 34.6% respectively.


Asunto(s)
Aprendizaje Profundo , Fracturas Óseas , Humanos , Inteligencia Artificial , Redes Neurales de la Computación , Fracturas Óseas/diagnóstico por imagen , Radiografía
7.
Ultramicroscopy ; 240: 113590, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35908326

RESUMEN

We report a local mapping photoresponse of WSe2 using a second-harmonic (2w) channel based on nondestructive electrostatic force microscopy (EFM). The 2w signals resulting from interaction between WSe2 and EFM tip are intrinsically related to the electrical conductivity of WSe2. The photoresponse images and rise/decay time constants of WSe2 are obtained by local mapping 2w signals under illumination. We observe that the local photoresponse signals of WSe2 increase with the positive tip gate voltage while the WSe2 shows a p-type behavior in dark conditions We find that the reduced mobility of the photogenerated charge carriers resulting from the enhanced carrier scattering in the accumulation regime of WSe2 is responsible for the gate-dependent photoresponse behavior. Our results provide a deep understanding the intrinsic optoelectrical properties of WSe2 and contribute to the developments in the optoelectronic devices based on van der Waals layered materials.

8.
Sensors (Basel) ; 22(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35746269

RESUMEN

Two vapochromic dyes (DMx and DM) were synthesized to be used for textile-based sensors detecting the vapor phase of organic solvents. They were designed to show sensitive color change properties at a low concentration of vapors at room temperature. They were applied to cotton fabrics as a substrate of the textile-based sensors to examine their sensing properties for nine organic solvents frequently used in semiconductor manufacturing processes, such as trichloroethylene, dimethylacetamide, iso-propanol, methanol, n-hexane, ethylacetate, benzene, acetone, and hexamethyldisilazane. The textile sensor exhibited strong sensing properties of polar solvents rather than non-polar solvents. In particular, the detection of dimethylacetamide was the best, showing a color difference of 15.9 for DMx and 26.2 for DM under 300 ppm exposure. Even at the low concentration of 10 ppm of dimethylacetamide, the color change values reached 7.7 and 13.6, respectively, in an hour. The maximum absorption wavelength of the textile sensor was shifted from 580 nm to 550 nm for DMx and 550 nm to 540 nm for DM, respectively, due to dimethylacetamide exposure. The sensing mechanism was considered to depend on solvatochromism, the aggregational properties of the dyes and the adsorption amounts of the solvent vapors on the textile substrates to which the dyes were applied. Finally, the reusability of the textile sensor was tested for 10 cycles.

9.
J Phys Chem Lett ; 11(16): 6684-6690, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32677834

RESUMEN

We investigate the layer-number-dependent dielectric response of WSe2 by measuring the phase shift (Φ) through an electrostatic force microscopy (EFM). The measured Φ results stem mainly from the capacitive coupling between the tip and WSe2 based on the plane capacitor model, leading to changes in the second derivative of the capacitance (C'') values, which increase in a few layers and saturate to the bulk value under an applied EFM tip bias. The C'' value is related to the dielectric polarization, reflecting the charge carrier concentration and mobility of WSe2 flakes with different numbers of layers. This implies that the dielectric constant of WSe2 shows layer-number-dependent behavior which increases with the number of layers, approaching the bulk value. Furthermore, we also construct a spatially resolved C'' map to observe the local dielectric response of WSe2 flakes. Our work could be significant in that it can improve the performance of novel electronic devices based on the controllable dielectric properties of 2D vdW semiconductor materials.

10.
RSC Adv ; 10(28): 16404-16414, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35498875

RESUMEN

Highly transparent optical logic circuits operated with visible light signals are fabricated using phototransistors with a heterostructure comprised of an oxide semiconductor (ZnO) with a wide bandgap and quantum dots (CdSe/ZnS QDs) with a small bandgap. ZnO serves as a highly transparent active channel, while the QDs absorb visible light and generate photoexcited charge carriers. The induced charge carriers can then be injected into the ZnO conduction band from the QD conduction band, which enables current to flow to activate the phototransistor. The photoexcited charge transfer mechanism is investigated using time-resolved photoluminescence spectroscopy, scanning Kelvin probe microscopy, and ultraviolet photoelectron spectroscopy. Measurements show that carriers in the QD conduction band can transfer to the ZnO conduction band under visible light illumination due to a change in the Fermi energy level. Moreover, the barrier for electron injection into the ZnO conduction band from the QD conduction band is low enough to allow photocurrent generation in the QDs/ZnO phototransistor. Highly transparent NOT, NOR, and NAND optical logic circuits are fabricated using the QDs/ZnO heterostructure and transparent indium tin oxide electrodes. This work provides a means of developing highly transparent optical logic circuits that can operate under illumination with low-energy photons such as those found in visible light.

11.
ACS Appl Mater Interfaces ; 12(1): 1151-1158, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31808674

RESUMEN

Intercorrelation of thermoelectric properties of a doped conjugated semiconducting polymer (PIDF-BT) with charge carrier density, conductive morphology, and crystallinity are systematically investigated. Upon being doped with F4-TCNQ by the sequential doping method, PIDF-BT exhibited a high electrical conductivity over 210 S cm-1. The significant enhancement of electrical conductivity resulted from a high charge carrier density, which is attributed to the effective charge-transfer-based integer doping between PIDF-BT and dopant molecules. Based on the systemic characterization on the optical, electrical, and structural properties of doped PIDF-BT annealed at different temperatures, we investigated the characteristic correlations between thermoelectric properties of PIDF-BT films and their four-probe electrical conductivity, charge carrier density, and charge carrier mobility obtained from AC Hall effect measurements. This study revealed that exercising fine control over the crystallinity and conductive migration of the conjugated polymer films can be a strategic approach to suppressing the degradation of the Seebeck coefficient at high charge carrier density and ultimately to maximizing the power factors of organic thermoelectric devices.

12.
J Phys Chem Lett ; 10(14): 4010-4016, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31137929

RESUMEN

Understanding the interlayer charge coupling mechanism in a two-dimensional van der Waals (vdW) heterojunction is crucial for optimizing the performance of heterostructure-based (opto)electronic devices. Here, we report mapping the gate response of a multilayer WSe2/MoS2 heterostructure with locally different degrees of charge depletion through mobile carrier measurements based on electrostatic force microscopy. We observed ambipolar or unipolar behavior depending on the degree of charge depletion in the heterojunction under tip gating. Interestingly, the WSe2 on MoS2 shows gating behavior that is more efficient than that on the SiO2/Si substrate, which can be explained by the high dielectric environment and screening of impurities on the SiO2 surface by the MoS2. Furthermore, we found that the gate-induced majority carriers in the heterojunction reduce the carrier lifetime, leading to the enhanced interlayer recombination of the photogenerated carriers under illumination. Our work provides a comprehensive understanding of the interfacial phenomena at the vdW heterointerface with charge depletion.

13.
Angew Chem Int Ed Engl ; 58(12): 3754-3758, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30548756

RESUMEN

Black phosphorus (BP) has received much attention owing to its fascinating properties, such as a high carrier mobility and tunable band gap. However, these advantages have been overshadowed by the fast degradation of BP under ambient conditions. To overcome this obstacle, the exact degradation mechanisms need to be unveiled. Herein, we analyzed two sequential degradation processes and the layer-dependent degradation rates of BP in the dark by scanning Kelvin probe microscopy (SKPM) measurements and theoretical modeling. The layer-dependent degradation was successfully interpreted by considering the oxidation model based on the Marcus-Gerischer theory (MGT). In the dark, the electron transfer rate from BP to oxygen molecules depends on the number of layers as these systems have different carrier concentrations. This work not only provides a deeper understanding of the degradation mechanism itself but also suggest new strategies for the design of stable BP-based electronics.

14.
Nano Lett ; 19(1): 545-553, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30582703

RESUMEN

The variation of the electronic structure of individual molecules as a function of the applied bias matters for the performance of molecular and organic electronic devices. Understanding the structure-electric-field relationship, however, remains a challenge because of the lack of in-operando spectroscopic technique and complexity arising from the ill-defined on-surface structure of molecules and organic-electrode interfaces within devices. We report that a reliable and reproducible molecular diode can be achieved by control of the conjugation length in polycyclic-aromatic-hydrocarbon (PAH)-terminated n-alkanethiolate (denoted as SC11PAH), incorporated into liquid-metal-based large-area tunnel junctions in the form of a self-assembled monolayer. By taking advantage of the structural simplicity and tunability of SC11PAH and the high-yielding feature of the junction technique, we demonstrate that the increase in the conjugation length of the PAH terminal group leads to a significant rectification ratio up to ∼1.7 × 102 at ±740 mV. Further study suggests that the Stark shift of the molecular energy resonance of the PAH breaks the symmetry of the energy topography across the junction and induces rectification in a temperature-independent charge-transport regime.

15.
Nano Lett ; 18(3): 1937-1945, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29400979

RESUMEN

A van der Waals (vdW) Schottky junction between two-dimensional (2D) transition metal dichalcogenides (TMDs) is introduced here for both vertical and in-plane current devices: Schottky diodes and metal semiconductor field-effect transistors (MESFETs). The Schottky barrier between conducting NbS2 and semiconducting n-MoS2 appeared to be as large as ∼0.5 eV due to their work-function difference. While the Schottky diode shows an ideality factor of 1.8-4.0 with an on-to-off current ratio of 103-105, Schottky-effect MESFET displays little gate hysteresis and an ideal subthreshold swing of 60-80 mV/dec due to low-density traps at the vdW interface. All MESFETs operate with a low threshold gate voltage of -0.5 ∼ -1 V, exhibiting easy saturation. It was also found that the device mobility is significantly dependent on the condition of source/drain (S/D) contact for n-channel MoS2. The highest room temperature mobility in MESFET reaches to approximately more than 800 cm2/V s with graphene S/D contact. The NbS2/n-MoS2 MESFET with graphene was successfully integrated into an organic piezoelectric touch sensor circuit with green OLED indicator, exploiting its predictable small threshold voltage, while NbS2/n-MoS2 Schottky diodes with graphene were applied to extract doping concentrations in MoS2 channel.

16.
ACS Appl Mater Interfaces ; 9(31): 26325-26332, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28718280

RESUMEN

Rhenium disulfide (ReS2) has attracted immense interest as a promising two-dimensional material for optoelectronic devices owing to its outstanding photonic response based on its energy band gap's insensitivity to the layer thickness. Here, we theoretically calculated the electrical band structure of mono-, bi-, and trilayer ReS2 and experimentally found the work function to be 4.8 eV, which was shown to be independent of the layer thickness. We also evaluated the contact resistance of a ReS2 field-effect transistor using a Y-function method with various metal electrodes, including graphene. The ReS2 channel is a strong n-type semiconductor, thus a lower work function than that of metals tends to lead to a lower contact resistance. Moreover, the graphene electrodes, which were not chemically or physically bonded to ReS2, showed the lowest contact resistance, regardless of the work function, suggesting a significant Fermi-level pinning effect at the ReS2/metal interface. In addition, an asymmetric Schottky diode device was demonstrated using Ti or graphene for ohmic contacts and Pt or Pd for Schottky contacts. The ReS2-based transistor used in this study on the work function of ReS2 achieved the possibility of designing the next-generation nanologic devices.

17.
Proc Natl Acad Sci U S A ; 111(30): 10928-32, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024198

RESUMEN

Molecular junctions formed using the scanning-tunneling-microscope-based break-junction technique (STM-BJ) have provided unique insight into charge transport at the nanoscale. In most prior work, the same metal, typically Au, Pt, or Ag, is used for both tip and substrate. For such noble metal electrodes, the density of electronic states is approximately constant within a narrow energy window relevant to charge transport. Here, we form molecular junctions using the STM-BJ technique, with an Au metal tip and a microfabricated graphite substrate, and measure the conductance of a series of graphite/amine-terminated oligophenyl/Au molecular junctions. The remarkable mechanical strength of graphite and the single-crystal properties of our substrates allow measurements over few thousand junctions without any change in the surface properties. We show that conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same as that for measurements with two Au electrodes. More importantly, despite the inherent symmetry of the oligophenylamines, we observe rectification in these junctions. State-of-art ab initio conductance calculations are in good agreement with experiment, and explain the rectification. We show that the highly energy-dependent graphite density of states contributes variations in transmission that, when coupled with an asymmetric voltage drop across the junction, leads to the observed rectification. Together, our measurements and calculations show how functionality may emerge from hybrid molecular-scale devices purposefully designed with different electrodes beyond the so-called "wide band limit," opening up the possibility of assembling molecular junctions with dissimilar electrodes using layered 2D materials.

18.
Nano Lett ; 14(2): 794-8, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24446585

RESUMEN

We measure conductance and thermopower of single Au-4,4'-bipyridine-Au junctions in distinct low and high conductance binding geometries accessed by modulating the electrode separation. We use these data to determine the electronic energy level alignment and coupling strength for these junctions, which are known to conduct through the lowest unoccupied molecular orbital (LUMO). Contrary to intuition, we find that, in the high-conductance junction, the LUMO resonance energy is further away from the Au Fermi energy than in the low-conductance junction. However, the LUMO of the high-conducting junction is better coupled to the electrode. These results are in good quantitative agreement with self-energy corrected zero-bias density functional theory calculations. Our calculations show further that measurements of conductance and thermopower in amine-terminated oligophenyl-Au junctions, where conduction occurs through the highest occupied molecular orbitals, cannot be used to extract electronic parameters as their transmission functions do not follow a simple Lorentzian form.

19.
Nanotechnology ; 24(37): 375302, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23965436

RESUMEN

We report a simple but efficient method to fabricate versatile graphene nanonet (GNN)-devices. In this method, networks of V2O5 nanowires (NWs) were prepared in specific regions of single-layer graphene, and the graphene layer was selectively etched via a reactive ion etching method using the V2O5 NWs as a shadow mask. The process allowed us to prepare large scale patterns of GNN structures which were comprised of continuous networks of graphene nanoribbons (GNRs) with chemical functional groups on their edges. The GNN can be easily functionalized with biomolecules for fluorescent biochip applications. Furthermore, electrical channels based on GNN exhibited a rather high mobility and low noise compared with other network structures based on nanostructures such as carbon nanotubes, which was attributed to the continuous connection of nanoribbons in GNN structures. As a proof of concept, we built DNA sensors based on GNN channels and demonstrated the selective detection of DNA. Since our method allows us to prepare high-performance networks of GNRs over a large surface area, it should open up various practical biosensing applications.


Asunto(s)
Técnicas Biosensibles/métodos , Grafito/química , Nanoestructuras/química , ADN/metabolismo , Electricidad , Fluorescencia , Nanoestructuras/ultraestructura , Espectroscopía de Fotoelectrones
20.
Analyst ; 138(19): 5588-93, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23884074

RESUMEN

We presented a scalable fabrication method for the preparation of multilayered nano-prism vertex (NV)-tips whose dimensions can be controlled for tip-enhanced Raman spectroscopy (TERS). The NV-tip had sharp vertices (diameter ~20 nm) originated from the chemical lift-off process after the angle-grinding process, enabling high resolution imaging. TERS measurements were performed on brilliant cresyl blue (BCB) molecules using a Ag/Au NV-tip, revealing the enhanced field localization at the vertices of the NV-tip. Furthermore, we could observe the polarization effect of the NV-tip. Our NV-tips should be a powerful tool for basic research on TERS experiments and SPM applications.


Asunto(s)
Nanotecnología/instrumentación , Nanotecnología/métodos , Espectrometría Raman/instrumentación , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA