RESUMEN
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Asunto(s)
Fotosíntesis , Fotosíntesis/fisiología , Luz , Plantas/metabolismo , Plantas/efectos de la radiaciónRESUMEN
The UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaAOFF) or restore (PdaAON) the pdaA open reading frame. Compared with B. cereus populations in the PdaAON state, populations in the PdaAOFF state produced a lower yield of viable endospores but endowed them with vastly increased UV resistance. Moreover, selection pressures based on either quantity (i.e., yield of viable endospores) or quality (i.e., UV resistance of viable endospores) aspects could readily shift populations between PdaAON and PdaAOFF states, respectively. Bioinformatic analysis also revealed that pdaA homologs within the Bacillus and Clostridium genera are often equipped with several short tandem repeat regions, suggesting a wider implementation of the pdaA-mediated phase variability in other sporeformers as well. These results for the first time reveal (1) pdaA as a phase-variable contingency locus in the adaptive evolution of endospore properties and (2) bet-hedging between what appears to be a quantity versus quality trade-off in endospore crops.
Asunto(s)
Bacillus cereus , Esporas Bacterianas , Esporas Bacterianas/genética , Bacillus cereus/genética , Evolución Biológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular , Rayos UltravioletaRESUMEN
Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.
Asunto(s)
Bacillus cereus , Calor , Esporas Bacterianas , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Bacillus cereus/genética , Bacillus cereus/crecimiento & desarrollo , Bacillus cereus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Termotolerancia , Adaptación Fisiológica , Secuenciación Completa del Genoma , Microbiología de Alimentos , Genoma Bacteriano , Evolución BiológicaRESUMEN
Understanding the evolutionary dynamics of foodborne pathogens throughout our food production chain is of utmost importance. In this study, we reveal that Salmonella Typhimurium can readily and reproducibly acquire vastly increased heat shock resistance upon repeated exposure to heat shock. Counterintuitively, this boost in heat shock resistance was invariantly acquired through loss-of-function mutations in the dnaJ gene, encoding a heat shock protein that acts as a molecular co-chaperone of DnaK and enables its role in protein folding and disaggregation. As a trade-off, however, the acquisition of heat shock resistance inevitably led to attenuated growth at 37°C and higher temperatures. Interestingly, loss of DnaJ also downregulated the activity of the master virulence regulator HilD, thereby lowering the fraction of virulence-expressing cells within the population and attenuating virulence in mice. By connecting heat shock resistance evolution to attenuation of HilD activity, our results confirm the complex interplay between stress resistance and virulence in Salmonella Typhimurium. IMPORTANCE: Bacterial pathogens such as Salmonella Typhimurium are equipped with both stress response and virulence features in order to navigate across a variety of complex inhospitable environments that range from food-processing plants up to the gastrointestinal tract of its animal host. In this context, however, it remains obscure whether and how adaptation to one environment would obstruct fitness in another. In this study, we reveal that severe heat stress counterintuitively, but invariantly, led to the selection of S. Typhimurium mutants that are compromised in the activity of the DnaJ heat shock protein. While these mutants obtained massively increased heat resistance, their virulence became greatly attenuated. Our observations, therefore, reveal a delicate balance between optimal tuning of stress response and virulence features in bacterial pathogens.
Asunto(s)
Proteínas Bacterianas , Salmonella typhimurium , Animales , Ratones , Salmonella typhimurium/genética , Virulencia/genética , Temperatura , Proteínas Bacterianas/metabolismo , Respuesta al Choque Térmico , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismoRESUMEN
Proper elimination of bacterial endospores in foods and food processing environment is challenging because of their extreme resistance to various stresses. Often, sporicidal treatments prove insufficient to eradicate the contaminating endospore population as a whole, and might therefore serve as a selection pressure for enhanced endospore resistance. In the sporeforming Bacillus cereus group, Bacillus weihenstephanensis is an important food spoilage organism and potential cereulide producing pathogen, due to its psychrotolerant growth ability at 7 °C. Although the endospores of B. weihenstephanensis are generally less heat resistant compared to their mesophilic or thermotolerant relatives, our data now show that non-emetic B. weihenstephanensis strain LMG 18989T can readily and reproducibly evolve to acquire much enhanced endospore heat resistance. In fact, one of the B. weihenstephanensis mutants from directed evolution by wet heat in this study yielded endospores displaying a > 4-fold increase in D-value at 91 °C compared to the parental strain. Moreover, these mutant endospores retained their superior heat resistance even when sporulation was performed at 10 °C. Interestingly, increased endospore heat resistance did not negatively affect the vegetative growth capacities of the evolved mutants at lower (7 °C) and upper (37 °C) growth temperature boundaries, indicating that the correlation between cardinal growth temperatures and endospore heat resistance which is observed among bacterial sporeformers is not necessarily causal.
Asunto(s)
Bacillus/crecimiento & desarrollo , Bacillus/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Evolución Biológica , Depsipéptidos/biosíntesis , Manipulación de Alimentos , CalorRESUMEN
Bacterial endospores are exposed to a broad variety of sublethal and lethal stresses in the food production chain. Generally, these stresses will not completely eliminate the existing spore populations, and thus constitute a selection pressure on the spores. One stress that is frequently used in the food production chains to disinfect (food) contact surfaces is UV-C. At a wavelength of 254â¯nm, UV-C has germicidal properties. The aim of this research is to investigate the impact of UV-C stress on the evolution of endospore recalcitrance and germination in B. cereus. A directed evolution experiment was set up in which B. cereus was repeatedly subjected to a cycle of sporulation, sporicidal UV-C treatment, germination and outgrowth. We show here that three independent lineages of UV-C cycled B. cereus spores reproducibly acquired a 30-fold or higher increase in UV-C resistance at 164â¯mJ/cm2. Surprisingly, the UV-C resistant spores of the clones isolated from each of the lineages also became significantly more sensitive to wet heat as a normally non-lethal heat treatment at 70⯰C for 15â¯min resulted in an average 1.8 log cfu/mL reduction. From time-lapse phase contrast microscopy analysis, UV-C resistant mutant spores also showed a distinctive heterogeneity in refractility and a severe germination defect compared to the wild type. However, UV-C resistance of the corresponding vegetative cells was not altered. In conclusion, this work shows that UV-C resistance of endospores is an adaptive trait that can readily be improved, although at an apparent cost for heat resistance and germination efficiency. As such, these results provide novel insights in the evolvability of, and correlation between, some endospore properties.