RESUMEN
Osteoarthritis (OA) is a progressive and irreversible degenerative joint disease that is characterized by cartilage destruction, osteophyte formation, subchondral bone remodeling, and synovitis. Despite affecting millions of patients, effective and safe disease-modifying osteoarthritis drugs are lacking. Here we reveal an unexpected role for the small molecule 5-aminosalicylic acid (5-ASA), which is used as an anti-inflammatory drug in ulcerative colitis. We show that 5-ASA competes with extracellular-matrix collagen-II to bind to osteoclast-associated receptor (OSCAR) on chondrocytes. Intra-articular 5-ASA injections ameliorate OA generated by surgery-induced medial-meniscus destabilization in male mice. Significantly, this effect is also observed when 5-ASA was administered well after OA onset. Moreover, mice with DMM-induced OA that are treated with 5-ASA at weeks 8-11 and sacrificed at week 12 have thicker cartilage than untreated mice that were sacrificed at week 8. Mechanistically, 5-ASA reverses OSCAR-mediated transcriptional repression of PPARγ in articular chondrocytes, thereby suppressing COX-2-related inflammation. It also improves chondrogenesis, strongly downregulates ECM catabolism, and promotes ECM anabolism. Our results suggest that 5-ASA could serve as a DMOAD.
Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Masculino , Animales , Ratones , Mesalamina/farmacología , Mesalamina/uso terapéutico , PPAR gamma/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Modelos Animales de EnfermedadRESUMEN
Various environmental compounds are inducers of lung injury. Mitochondria are crucial organelles that can be affected by many lung diseases. NecroX is an indole-derived antioxidant that specifically targets mitochondria. We aimed to evaluate the therapeutic potential and related molecular mechanisms of NecroX in preclinical models of fatal lung injury. We investigated the therapeutic effects of NecroX on two different experimental models of lung injury induced by polyhexamethylene guanidine (PHMG) and bleomycin, respectively. We also performed transcriptome analysis of lung tissues from PHMG-exposed mice and compared the expression profiles with those from dozens of bleomycin-induced fibrosis public data sets. Respiratory exposure to PHMG and bleomycin led to fatal lung injury manifesting extensive inflammation followed by fibrosis. These specifically affected mitochondria regarding biogenesis, mitochondrial DNA integrity, and the generation of mitochondrial reactive oxygen species in various cell types. NecroX significantly improved the pathobiologic features of the PHMG- and bleomycin-induced lung injuries through regulation of mitochondrial oxidative stress. Endoplasmic reticulum stress was also implicated in PHMG-associated lung injuries of mice and humans, and NecroX alleviated PHMG-induced lung injury and the subsequent fibrosis, in part, via regulation of endoplasmic reticulum stress in mice. Gene expression profiles of PHMG-exposed mice were highly consistent with public data sets of bleomycin-induced lung injury models. Pathways related to mitochondrial activities, including oxidative stress, oxidative phosphorylation, and mitochondrial translation, were upregulated, and these patterns were significantly reversed by NecroX. These findings demonstrate that NecroX possesses therapeutic potential for fatal lung injury in humans.
Asunto(s)
Lesión Pulmonar , Humanos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/patología , Guanidina/farmacología , Pulmón/patología , Guanidinas/farmacología , Estrés Oxidativo , Fibrosis , Bleomicina/farmacología , Estrés del Retículo EndoplásmicoRESUMEN
Data-driven drug discovery exploits a comprehensive set of big data to provide an efficient path for the development of new drugs. Currently, publicly available bioassay data sets provide extensive information regarding the bioactivity profiles of millions of compounds. Using these large-scale drug screening data sets, we developed a novel in silico method to virtually screen hit compounds against protein targets, named BEAR (Bioactive compound Enrichment by Assay Repositioning). The underlying idea of BEAR is to reuse bioassay data for predicting hit compounds for targets other than their originally intended purposes, i.e., "assay repositioning". The BEAR approach differs from conventional virtual screening methods in that (1) it relies solely on bioactivity data and requires no physicochemical features of either the target or ligand. (2) Accordingly, structurally diverse candidates are predicted, allowing for scaffold hopping. (3) BEAR shows stable performance across diverse target classes, suggesting its general applicability. Large-scale cross-validation of more than a thousand targets showed that BEAR accurately predicted known ligands (median area under the curve = 0.87), proving that BEAR maintained a robust performance even in the validation set with additional constraints. In addition, a comparative analysis demonstrated that BEAR outperformed other machine learning models, including a recent deep learning model for ABC transporter family targets. We predicted P-gp and BCRP dual inhibitors using the BEAR approach and validated the predicted candidates using in vitro assays. The intracellular accumulation effects of mitoxantrone, a well-known P-gp/BCRP dual substrate for cancer treatment, confirmed nine out of 72 dual inhibitor candidates preselected by primary cytotoxicity screening. Consequently, these nine hits are novel and potent dual inhibitors for both P-gp and BCRP, solely predicted by bioactivity profiles without relying on any structural information of targets or ligands.
Asunto(s)
Descubrimiento de Drogas , Proteínas de Neoplasias , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Descubrimiento de Drogas/métodos , Aprendizaje Automático , MacrodatosRESUMEN
Intrinsic or acquired radioresistance often limits the efficacy of radiation therapy (RT), thereby leading to local control failure. Cancerous cells have abnormal pH dynamics due to high metabolic demands, but it is unclear how pH dynamics contribute to radioresistance. In this study, we investigated the role of Na-H exchange 1 (NHE1), the major intracellular pH (pHi) regulator, in RT response. We observed that RT increased NHE1 expression and modulated pHi in MDA-MB-231 human breast cancer cells. When combined with RT, pharmacological NHE1 inhibition by 5-(N-Ethyl-N-isopropyl)amiloride (EIPA) reduced pHi and clonogenic survival. EIPA attenuated radiation-damaged DNA repair, increasing G2/M cell cycle arrest. The combination of EIPA and RT increased apoptotic cell death while decreasing phosphorylation of NF-κB p65. Similarly, the knockdown of NHE1 increased radiosensitivity with lower pHi and increased apoptosis. Consistent with in vitro data, the EIPA plus RT inhibited the growth of MDA-MB-231 xenograft tumors in mice to a greater extent than either EIPA or RT alone. EIPA abrogated the RT-induced increase in NHE1 and phospho-NF-κB p65 expression in tumor tissues. Such coincidence of increased NHE1 level, pHi, and NF-κB activation was also found in radioresistant MDA-MB-231 cells, which were reversed by EIPA treatment. Bioinformatics analysis of RNA sequencing data revealed that inhibiting NHE1 reversed three core gene networks that were up-regulated in radioresistant cells and correlated with high NHE1 expression in patient samples: NF-κB, senescence, and extracellular matrix. Taken together, our findings suggest that NHE1 contributes to RT resistance via NF-κB-mediated signaling networks, and NHE1 may be a promising target for improving RT outcomes.
Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Ratones , Animales , Femenino , FN-kappa B/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Amilorida/farmacología , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Concentración de Iones de HidrógenoRESUMEN
BACKGROUND/AIMS: We aimed to define an optimal target population and drug-specific biomarkers that may predict dipeptidyl peptidase (DPP)-4 inhibitor responses in non-alcoholic fatty liver disease (NAFLD). METHODS: An exploration study (study I) was performed using three different NAFLD models (basket study design; high-fat diet [HFD], methionine choline-deficient diet [MCD], and high-cholesterol Western diet [WD] models). RNA transcriptome analysis was performed on pre-studied liver tissues to identify biomarkers that could predict the response to DPP-4 inhibitors. In the validation study (study II), the HFD-induced NAFLD model was divided into high and low hepatic insulin-like growth factor binding protein 1 (Igfbp-1) groups based on the pre-study liver biopsy. RESULTS: DPP-4 inhibitor attenuated the NAFLD activity score and fibrosis stage in the HFD model but not in the WD and MCD models. The overall response rate was 19% across the modified basket NAFLD trial and 42%, 25%, and 0% in the HFD, WD, and MCD models. Hepatic Igfbp-1 expression was higher in the responder group than in the non-responder group in pre-study biopsy samples. In contrast, hepatic Igfbp-1 expression was lower in the responder group than in the non-responder group in the end-study biopsy samples. DPP-4 inhibitor response rates were 83% and 17% in the baseline hepatic high Igfbp-1 and low Igfbp-1 groups, respectively. Hepatic messenger RNA Igfbp-1 expression was positively correlated with serum IGFBP-1 levels. CONCLUSION: The DPP-4 inhibitor response was higher in the HFD phenotype and pre-treatment levels of hepatic or serum IGFBP-1 were high.
Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Enfermedad del Hígado Graso no Alcohólico , Animales , Biomarcadores , Dieta Alta en Grasa , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Humanos , Hipoglucemiantes , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Hígado/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismoRESUMEN
Drug discovery based on artificial intelligence has been in the spotlight recently as it significantly reduces the time and cost required for developing novel drugs. With the advancement of deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based methodologies are emerging at all steps of drug development processes. In particular, pharmaceutical chemists have faced significant issues with regard to selecting and designing potential drugs for a target of interest to enter preclinical testing. The two major challenges are prediction of interactions between drugs and druggable targets and generation of novel molecular structures suitable for a target of interest. Therefore, we reviewed recent deep-learning applications in drug-target interaction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive summary of a variety of drug and protein representations, DL models, and commonly used benchmark datasets or tools for model training and testing. Finally, we present the remaining challenges for the promising future of DL-based DTI prediction and de novo drug design.
Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas , Encuestas y Cuestionarios , Animales , Diseño de Fármacos , Desarrollo de Medicamentos , Humanos , Redes Neurales de la Computación , Preparaciones Farmacéuticas/químicaRESUMEN
Extracellular vesicles (EV) in the tumor microenvironment have emerged as crucial mediators that promote proliferation, metastasis, and chemoresistance. However, the role of circulating small EVs (csEV) in cancer progression remains poorly understood. In this study, we report that csEV facilitate cancer progression and determine its molecular mechanism. csEVs strongly promoted the migration of cancer cells via interaction with phosphatidylserine of csEVs. Among the three TAM receptors, TYRO3, AXL, and MerTK, TYRO3 mainly interacted with csEVs. csEV-mediated TYRO3 activation promoted migration and metastasis via the epithelial-mesenchymal transition and stimulation of RhoA in invasive cancer cells. Additionally, csEV-TYRO3 interaction induced YAP activation, which led to increased cell proliferation and chemoresistance. Combination treatment with gefitinib and KRCT-6j, a selective TYRO3 inhibitor, significantly reduced tumor volume in xenografts implanted with gefitinib-resistant non-small cell lung cancer cells. The results of this study show that TYRO3 activation by csEVs facilitates cancer cell migration and chemoresistance by activation of RhoA or YAP, indicating that the csEV/TYRO3 interaction may serve as a potential therapeutic target for aggressive cancers in the clinic. SIGNIFICANCE: These findings demonstrate that circulating extracellular vesicles are a novel driver in migration and survival of aggressive cancer cells via TYRO3 activation. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3539/F1.large.jpg.
Asunto(s)
Resistencia a Antineoplásicos , Vesículas Extracelulares/metabolismo , Gefitinib/farmacología , Neoplasias Hepáticas/secundario , Neoplasias/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias del Bazo/secundario , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Neoplasias del Bazo/tratamiento farmacológico , Neoplasias del Bazo/genética , Neoplasias del Bazo/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Serpin family E member 1 (SERPINE1), a serine proteinase inhibitor, serves as an important regulator of extracellular matrix remodeling. Emerging evidence suggests that SERPINE1 has diverse roles in cancer and is associated with poor prognosis. However, the mechanism via which SERPINE1 is induced in cancer has not been fully determined. In order to examine the molecular mechanism of SERPINE1 expression, the present study took advantage of the isogenic pair of lung cancer cells with epithelial or mesenchymal features. Using genetic perturbation and following biochemical analysis, the present study demonstrated that SERPINE1 expression was upregulated in mesenchymal lung cancer cells and promoted cellular invasiveness. Yesassociated protein (YAP)dependent SERPINE1 expression was modulated by treatment with a Rhoassociated protein kinase inhibitor, Y27632. Moreover, TGFß treatment supported YAPdependent SERPINE1 expression, and an enhanced TGFß response in mesenchymal lung cancer cells promoted SERPINE1 expression. TGFßmediated SERPINE1 expression was significantly attenuated by knockdown of YAP or transcriptional coactivator with PDZbinding motif, suggesting that crosstalk between the TGFß and YAP pathways underlies SERPINE1 expression in mesenchymal cancer cells.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Pulmonares/genética , Inhibidor 1 de Activador Plasminogénico/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pulmón/patología , Neoplasias Pulmonares/patología , Células Madre Mesenquimatosas/patología , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Factor de Crecimiento Transformador beta/genética , Regulación hacia Arriba , Proteínas Señalizadoras YAPRESUMEN
N-α-acetyltransferase 20 (Naa20), which is a catalytic subunit of the N-terminal acetyltransferase B (NatB) complex, has recently been reported to be implicated in hepatocellular carcinoma (HCC) progression and autophagy, but the underlying mechanism remains unclear. Here, we report that based on bioinformatic analysis of Gene Expression Omnibus and The Cancer Genome Atlas data sets, Naa20 expression is much higher in HCC tumors than in normal tissues, promoting oncogenic properties in HCC cells. Mechanistically, Naa20 inhibits the activity of AMP-activated protein kinase (AMPK) to promote the mammalian target of rapamycin signaling pathway, which contributes to cell proliferation, as well as autophagy, through its N-terminal acetyltransferase (NAT) activity. We further show that liver kinase B1 (LKB1), a major regulator of AMPK activity, can be N-terminally acetylated by NatB in vitro, but also probably by NatB and/or other members of the NAT family in vivo, which may have a negative effect on AMPK activity through downregulation of LKB1 phosphorylation at S428. Indeed, p-LKB1 (S428) and p-AMPK levels are enhanced in Naa20-deficient cells, as well as in cells expressing the nonacetylated LKB1-MPE mutant; moreover, importantly, LKB1 deficiency reverses the molecular and cellular events driven by Naa20 knockdown. Taken together, our findings suggest that N-terminal acetylation of LKB1 by Naa20 may inhibit the LKB1-AMPK signaling pathway, which contributes to tumorigenesis and autophagy in HCC.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Acetiltransferasa B N-Terminal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Acetilación , Autofagia , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Cromatografía Liquida , Susceptibilidad a Enfermedades , Humanos , Neoplasias Hepáticas/patología , Modelos Biológicos , Transducción de Señal , Espectrometría de Masas en TándemRESUMEN
An efficient gene-editing technique for use in human pluripotent stem cells (hPSCs) has great potential value in regenerative medicine, as well as in drug discovery based on isogenic human disease models. However, the extremely low efficiency of gene editing in hPSCs remains as a major technical hurdle. Previously, we demonstrated that YM155, a survivin inhibitor developed as an anti-cancer drug, induces highly selective cell death in undifferentiated hPSCs. In this study, we demonstrated that the high cytotoxicity of YM155 in hPSCs, which is mediated by selective cellular uptake of the drug, is due to the high expression of SLC35F2 in these cells. Knockout of SLC35F2 with CRISPR-Cas9, or depletion with siRNAs, made the hPSCs highly resistant to YM155. Simultaneous editing of a gene of interest and transient knockdown of SLC35F2 following YM155 treatment enabled the survival of genome-edited hPSCs as a result of temporary YM155 resistance, thereby achieving an enriched selection of clonal populations with gene knockout or knock-in. This precise and efficient genome editing approach took as little as 3 weeks and required no cell sorting or the introduction of additional genes, to be a more feasible approach for gene editing in hPSCs due to its simplicity.
Asunto(s)
Células Madre Pluripotentes , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Resistencia a Medicamentos/genética , Edición Génica , Genoma Humano , HumanosRESUMEN
Erastin, a synthetic lethal compound against cancer expressing an oncogenic RAS, inhibits cystine/glutamate antiporters and causes ferroptosis. However, despite recent evidence for the mechanisms underlying ferroptosis, molecular biomarkers of erastin-dependent ferroptosis have not been identified. Here, we employed isogenic lung cancer cell models to show that a redox imbalance leads to glutathione depletion and ferroptosis. Subsequent transcriptome analysis of pan-cancer cell lines revealed that the activity of transcription factors, including NRF2 and AhR, serve as important markers of erastin resistance. Based on the integrated expression of genes in the nuclear receptor meta-pathway (NRM), we constructed an NRM model and validated its robustness using an independent pharmacogenomics dataset. The NRM model was further evaluated by sensitivity tests on nine cancer cell lines for which erastin sensitivities had not been determined. Our pharmacogenomics approach has the potential to pave the way for the efficient classification of patients for therapeutic intervention using erastin.
Asunto(s)
Ferroptosis , Glutatión , Humanos , Piperazinas , Receptores Citoplasmáticos y NuclearesRESUMEN
The underlying mechanism of necroptosis in relation to cancer is still unclear. Here, MYC, a potent oncogene, is an antinecroptotic factor that directly suppresses the formation of the RIPK1-RIPK3 complex. Gene set enrichment analyses reveal that the MYC pathway is the most prominently down-regulated signaling pathway during necroptosis. Depletion or deletion of MYC promotes the RIPK1-RIPK3 interaction, thereby stabilizing the RIPK1 and RIPK3 proteins and facilitating necroptosis. Interestingly, MYC binds to RIPK3 in the cytoplasm and inhibits the interaction between RIPK1 and RIPK3 in vitro. Furthermore, MYC-nick, a truncated form that is mainly localized in the cytoplasm, prevented TNF-induced necroptosis. Finally, down-regulation of MYC enhances necroptosis in leukemia cells and suppresses tumor growth in a xenograft model upon treatment with birinapant and emricasan. MYC-mediated suppression of necroptosis is a mechanism of necroptosis resistance in cancer, and approaches targeting MYC to induce necroptosis represent an attractive therapeutic strategy for cancer.
Asunto(s)
Leucemia/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Leucemia/genética , Leucemia/fisiopatología , Ratones , Ratones Endogámicos BALB C , Necroptosis , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-myc/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de SeñalRESUMEN
Osteoarthritis (OA), primarily characterized by articular cartilage destruction, is the most common form of age-related degenerative whole-joint disease. No disease-modifying treatments for OA are currently available. Although OA is primarily characterized by cartilage destruction, our understanding of the processes controlling OA progression is poor. Here, we report the association of OA with increased levels of osteoclast-associated receptor (OSCAR), an immunoglobulin-like collagen-recognition receptor. In mice, OSCAR deletion abrogates OA manifestations, such as articular cartilage destruction, subchondral bone sclerosis, and hyaline cartilage loss. These effects are a result of decreased chondrocyte apoptosis, which is caused by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in induced OA. Treatments with human OSCAR-Fc fusion protein attenuates OA pathogenesis caused by experimental OA. Thus, this work highlights the function of OSCAR as a catabolic regulator of OA pathogenesis, indicating that OSCAR blockade is a potential therapy for OA.
Asunto(s)
Apoptosis/efectos de los fármacos , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Osteoartritis/metabolismo , Osteoclastos/metabolismo , Receptores de Superficie Celular/metabolismo , Anciano , Animales , Cartílago Articular/patología , Condrocitos/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Receptores de Superficie Celular/efectos de los fármacos , Receptores de Superficie Celular/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismoRESUMEN
Despite the continual discovery of promising new cancer targets, drug discovery is often hampered by the poor druggability of these targets. As such, repurposing FDA-approved drugs based on cancer signatures is a useful alternative to cancer precision medicine. Here, we adopted an in silico approach based on large-scale gene expression signatures to identify drug candidates for lung cancer metastasis. Our clinicogenomic analysis identified GALNT14 as a putative driver of lung cancer metastasis, leading to poor survival. To overcome the poor druggability of GALNT14 in the control of metastasis, we utilized the Connectivity Map and identified bortezomib (BTZ) as a potent metastatic inhibitor, bypassing the direct inhibition of the enzymatic activity of GALNT14. The antimetastatic effect of BTZ was verified both in vitro and in vivo. Notably, both BTZ treatment and GALNT14 knockdown attenuated TGFß-mediated gene expression and suppressed TGFß-dependent metastatic genes. These results demonstrate that our in silico approach is a viable strategy for the use of undruggable targets in cancer therapies and for revealing the underlying mechanisms of these targets.
Asunto(s)
Antineoplásicos/farmacología , Bortezomib/farmacología , Transformación Celular Neoplásica/genética , Neoplasias Pulmonares/tratamiento farmacológico , N-Acetilgalactosaminiltransferasas/genética , Células A549 , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/tratamiento farmacológico , Medicina de Precisión/métodos , Interferencia de ARN , ARN Interferente Pequeño/genéticaRESUMEN
Ubiquinol-cytochrome c reductase (UQCRB), a subunit of the mitochondrial complex III, is highly expressed in tissues from colorectal cancer patients. Since UQCRB is highly expressed in colorectal cancer, we investigated miRNAs from mutant UQCRB-expressing cell lines to identify new miRNA biomarkers. After sequencing miRNAs in the mutant UQCRB-expressing cell lines, miR-4435 was selected as a potential biomarker candidate from the six up-regulated miRNAs. The expression level of miR-4435 in the mutant UQCRB-expressing cell lines and colon cancer was increased. Notably, the expression level of miR-4435 was increased in exosomes isolated from cell culture medium, suggesting that miR-4435 is closely related to colon cancer and that large amounts of miR-4435 may be secreted outside of the cells through exosomes. Additionally, exosomes extracted from the serum samples of colorectal cancer patients showed increased miR-4435 levels depending on the cancer progression stage. Moreover, analyses of a miRNA database and mRNA-sequencing data of the mutant UQCRB-expressing cell lines revealed that TIMP3, a tumor suppressor, could be a target of miR-4435. Additionally, the expression of miR-4435 was suppressed by UQCRB inhibitor treatment whereas TIMP3 was up-regulated. Upregulation of TIMP3 decreased proliferation of the mutant UQCRB-expressing cell lines and a colorectal cancer cell line. TIMP3 was also upregulated in response to miR-4435 inhibitor and UQCRB inhibitor treatments. Furthermore, these findings suggest that miR-4435 is related to an oncogenic function in UQCRB related disease, CRC, and that effects migration and invasion on mutant UQCRB-expressing cell lines and colorectal cancer cell. In conclusion, our results identified miR-4435 as a potential circulating miRNA biomarker of colorectal cancer associated with UQCRB.
Asunto(s)
Proteínas Portadoras/genética , Neoplasias Colorrectales/genética , MicroARNs/genética , Inhibidor Tisular de Metaloproteinasa-3/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Movimiento Celular/genética , Proliferación Celular/genética , MicroARN Circulante/sangre , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Exosomas/metabolismo , Exosomas/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , ARN Largo no CodificanteRESUMEN
Drug repositioning is an attractive alternative to conventional drug development when new beneficial effects of old drugs are clinically validated because pharmacokinetic and safety profiles are generally already available. Since ~ 30% of drugs newly approved by the US food and drug administration (FDA) are developed through drug repositioning, identifying novel usage for existing drugs is an emerging strategy for developing disease treatments. With advances in next-generation sequencing technologies, available transcriptome data related to diseases have expanded rapidly. Harnessing these resources enables a better understanding of disease mechanisms and drug mode of action (MOA), and moves toward personalized pharmacotherapy. In this review, we briefly outline publicly available large-scale transcriptome databases and tools for drug repositioning. We also highlight recent approaches leading to the discovery of novel drug targets, drug response biomarkers, drug indications, and drug MOA.
Asunto(s)
Simulación por Computador , Bases de Datos Genéticas , Reposicionamiento de Medicamentos , Preparaciones Farmacéuticas/química , Transcriptoma/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Transcriptoma/genética , Estados Unidos , United States Food and Drug AdministrationRESUMEN
Uncovering drug-target interactions (DTIs) is pivotal to understand drug mode-of-action (MoA), avoid adverse drug reaction (ADR), and seek opportunities for drug repositioning (DR). For decades, in silico predictions for DTIs have largely depended on structural information of both targets and compounds, e.g., docking or ligand-based virtual screening. Recently, the application of deep neural network (DNN) is opening a new path to uncover novel DTIs for thousands of targets. One important question is which features for targets are most relevant to DTI prediction. As an early attempt to answer this question, we objectively compared three canonical target features extracted from: (i) the expression profiles by gene knockdown (GEPs); (ii) the protein-protein interaction network (PPI network); and (iii) the pathway membership (PM) of a target gene. For drug features, the large-scale drug-induced transcriptome dataset, or the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 dataset was used. All these features are closely related to protein function or drug MoA, of which utility is only sparsely investigated. In particular, few studies have compared the three types of target features in DNN-based DTI prediction under the same evaluation scheme. Among the three target features, the PM and the PPI network show similar performances superior to GEPs. DNN models based on both features consistently outperformed other machine learning methods such as naïve Bayes, random forest, or logistic regression.
RESUMEN
Despite great potential for regenerative medicine, the high tumorigenic potential of human pluripotent stem cells (hPSCs) to form undesirable teratoma is an important technical hurdle preventing safe cell therapy. Various small molecules that induce the complete elimination of undifferentiated hPSCs, referred to as "stemotoxics," have been developed to facilitate tumor-free cell therapy, including the Survivin inhibitor YM155. In the present work, based on the chemical structure of YM155, total 26 analogs were synthesized and tested for stemotoxic activity toward human embryonic stem cells (hESCs) and induced PSCs (iPSCs). We found that a hydrogen bond acceptor in the pyrazine ring of YM155 derivatives is critical for stemotoxic activity, which is completely lost in hESCs lacking SLC35F2, which encodes a solute carrier protein. These results suggest that hydrogen bonding interactions between the nitrogens of the pyrazine ring and the SLC35F2 protein are critical for entry of YM155 into hPSCs, and hence stemotoxic activity.