Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JAMA Netw Open ; 6(3): e233502, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930149

RESUMEN

Importance: Early detection of attention-deficit/hyperactivity disorder (ADHD) and sleep problems is paramount for children's mental health. Interview-based diagnostic approaches have drawbacks, necessitating the development of an evaluation method that uses digital phenotypes in daily life. Objective: To evaluate the predictive performance of machine learning (ML) models by setting the data obtained from personal digital devices comprising training features (ie, wearable data) and diagnostic results of ADHD and sleep problems by the Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version for Diagnostic and Statistical Manual of Mental Disorders, 5th edition (K-SADS) as a prediction class from the Adolescent Brain Cognitive Development (ABCD) study. Design, Setting, and Participants: In this diagnostic study, wearable data and K-SADS data were collected at 21 sites in the US in the ABCD study (release 3.0, November 2, 2020, analyzed October 11, 2021). Screening data from 6571 patients and 21 days of wearable data from 5725 patients collected at the 2-year follow-up were used, and circadian rhythm-based features were generated for each participant. A total of 12 348 wearable data for ADHD and 39 160 for sleep problems were merged for developing ML models. Main Outcomes and Measures: The average performance of the ML models was measured using an area under the receiver operating characteristics curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In addition, the Shapley Additive Explanations value was used to calculate the importance of features. Results: The final population consisted of 79 children with ADHD problems (mean [SD] age, 144.5 [8.1] months; 55 [69.6%] males) vs 1011 controls and 68 with sleep problems (mean [SD] age, 143.5 [7.5] months; 38 [55.9%] males) vs 3346 controls. The ML models showed reasonable predictive performance for ADHD (AUC, 0.798; sensitivity, 0.756; specificity, 0.716; PPV, 0.159; and NPV, 0.976) and sleep problems (AUC, 0.737; sensitivity, 0.743; specificity, 0.632; PPV, 0.036; and NPV, 0.992). Conclusions and Relevance: In this diagnostic study, an ML method for early detection or screening using digital phenotypes in children's daily lives was developed. The results support facilitating early detection in children; however, additional follow-up studies can improve its performance.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastornos del Sueño-Vigilia , Dispositivos Electrónicos Vestibles , Masculino , Humanos , Niño , Femenino , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Ritmo Circadiano , Aprendizaje Automático , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA