Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38888585

RESUMEN

With the continued evolution of DNA sequencing technologies, the role of genome sequence data has become more integral in the classification and identification of Bacteria and Archaea. Six years after introducing EzBioCloud, an integrated platform representing the taxonomic hierarchy of Bacteria and Archaea through quality-controlled 16S rRNA gene and genome sequences, we present an updated version, that further refines and expands its capabilities. The current update recognizes the growing need for accurate taxonomic information as defining a species increasingly relies on genome sequence comparisons. We also incorporated an advanced strategy for addressing underrepresented or less studied lineages, bolstering the comprehensiveness and accuracy of our database. Our rigorous quality control protocols remain, where whole-genome assemblies from the NCBI Assembly Database undergo stringent screening to remove low-quality sequence data. These are then passed through our enhanced identification bioinformatics pipeline which initiates a 16S rRNA gene similarity search and then calculates the average nucleotide identity (ANI). For genome sequences lacking a 16S rRNA sequence and without a closely related genomic representative for ANI calculation, we apply a different ANI approach using bacterial core genes for improved taxonomic placement (core gene ANI, cgANI). Because of the increase in genome sequences available in NCBI and our newly introduced cgANI method, EzBioCloud now encompasses a total of 109 835 species, of which 21 964 have validly published names. 47 896 are candidate species identified either through 16S rRNA sequence similarity (phylotypes) or through whole genome ANI (genomospecies), and the remaining 39 975 were positioned in the taxonomic tree by cgANI (species clusters). Our EzBioCloud database is accessible at www.ezbiocloud.net/db.


Asunto(s)
Archaea , Bacterias , Genoma Bacteriano , Microbiota , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Archaea/genética , Archaea/clasificación , Filogenia , Bases de Datos Genéticas , Genoma Arqueal , Análisis de Secuencia de ADN , Biología Computacional/métodos
2.
Genomics ; 114(6): 110497, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36182010

RESUMEN

The goal of this study was to identify the genomic variants and determine molecular epidemiology of SARS-CoV-2 virus during the early pandemic stage in Bangladesh. Viral RNA was extracted, converted to cDNA, and amplified using Ion AmpliSeq™ SARS-CoV-2 Research Panel. 413 unique mutants from 151 viral isolates were identified. 80% of cases belongs to 8 mutants: 241C toT, 1163A toT, 3037C toT, 14408C toT, 23403A toG, 28881G toA, 28,882 G toA, and 28883G toC. Observed dominance of GR clade variants that have strong presence in Europe, suggesting European channel a possible entry route. Among 37 genomic mutants significantly associated with clinical symptoms, 3916CtoT (associated with sore-throat), 14408C to T (associated with cough-protection), 28881G to A, 28882G to A, and 28883G to C (associated with chest pain) were notable. These findings may inform future research platforms for disease management and epidemiological study.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Genómica , China
3.
Pathogens ; 9(3)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164338

RESUMEN

Shotgun metagenomics is of great importance in order to understand the composition of the microbial community associated with a sample and the potential impact it may exert on its host. For clinical metagenomics, one of the initial challenges is the accurate identification of a pathogen of interest and ability to single out that pathogen within a complex community of microorganisms. However, in absence of an accurate identification of those microorganisms, any kind of conclusion or diagnosis based on misidentification may lead to erroneous conclusions, especially when comparing distinct groups of individuals. When comparing a shotgun metagenomic sample against a reference genome sequence database, the classification itself is dependent on the contents of the database. Focusing on the genus Streptococcus, we built four synthetic metagenomic samples and demonstrated that shotgun taxonomic profiling using the bacterial core genes as the reference database performed better in both taxonomic profiling and relative abundance prediction than that based on the marker gene reference database included in MetaPhlAn2. Additionally, by classifying sputum samples of patients suffering from chronic obstructive pulmonary disease, we showed that adding genomes of genomospecies to a reference database offers higher taxonomic resolution for taxonomic profiling. Finally, we show how our genomospecies database is able to identify correctly a clinical stool sample from a patient with a streptococcal infection, proving that genomospecies provide better taxonomic coverage for metagenomic analyses.

4.
Front Microbiol ; 10: 834, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31068915

RESUMEN

For more than a decade, pan-genome analysis has been applied as an effective method for explaining the genetic contents variation of prokaryotic species. However, genomic characteristics and detailed structures of gene pools have not been fully clarified, because most studies have used a small number of genomes. Here, we constructed pan-genomes of seven species in order to elucidate variations in the genetic contents of >27,000 genomes belonging to Streptococcus pneumoniae, Staphylococcus aureus subsp. aureus, Salmonella enterica subsp. enterica, Escherichia coli and Shigella spp., Mycobacterium tuberculosis complex, Pseudomonas aeruginosa, and Acinetobacter baumannii. This work showed the pan-genomes of all seven species has open property. Additionally, systematic evaluation of the characteristics of their pan-genome revealed that phylogenetic distance provided valuable information for estimating the parameters for pan-genome size among several models including Heaps' law. Our results provide a better understanding of the species and a solution to minimize sampling biases associated with genome-sequencing preferences for pathogenic strains.

5.
J Microbiol ; 56(4): 280-285, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29492869

RESUMEN

Genome-based phylogeny plays a central role in the future taxonomy and phylogenetics of Bacteria and Archaea by replacing 16S rRNA gene phylogeny. The concatenated core gene alignments are frequently used for such a purpose. The bacterial core genes are defined as single-copy, homologous genes that are present in most of the known bacterial species. There have been several studies describing such a gene set, but the number of species considered was rather small. Here we present the up-to-date bacterial core gene set, named UBCG, and software suites to accommodate necessary steps to generate and evaluate phylogenetic trees. The method was successfully used to infer phylogenomic relationship of Escherichia and related taxa and can be used for the set of genomes at any taxonomic ranks of Bacteria. The UBCG pipeline and file viewer are freely available at https://www.ezbiocloud.net/tools/ubcg and https://www.ezbiocloud.net/tools/ubcg_viewer , respectively.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Genes Bacterianos , Filogenia , Archaea/clasificación , Archaea/genética , Escherichia coli/clasificación , Escherichia coli/genética , Genoma Bacteriano , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...