Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38586011

RESUMEN

Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease (AD). Microglia activation is accompanied by the formation and chronic maintenance of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aß) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased ROS and the dilated ER. The size and number of Aß plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/- APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in AD associated oxidative stress and neurodegeneration.

2.
Commun Biol ; 4(1): 548, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972668

RESUMEN

Mitochondrial function and innate immunity are intimately linked; however, the mechanisms how mitochondrion-shaping proteins regulate innate host defense remains largely unknown. Herein we show that mitofusin-2 (MFN2), a mitochondrial fusion protein, promotes innate host defense through the maintenance of aerobic glycolysis and xenophagy via hypoxia-inducible factor (HIF)-1α during intracellular bacterial infection. Myeloid-specific MFN2 deficiency in mice impaired the antimicrobial and inflammatory responses against mycobacterial and listerial infection. Mechanistically, MFN2 was required for the enhancement of inflammatory signaling through optimal induction of aerobic glycolysis via HIF-1α, which is activated by mitochondrial respiratory chain complex I and reactive oxygen species, in macrophages. MFN2 did not impact mitophagy during infection; however, it promoted xenophagy activation through HIF-1α. In addition, MFN2 interacted with the late endosomal protein Rab7, to facilitate xenophagy during mycobacterial infection. Our findings reveal the mechanistic regulations by which MFN2 tailors the innate host defense through coordinated control of immunometabolism and xenophagy via HIF-1α during bacterial infection.


Asunto(s)
Infecciones Bacterianas/inmunología , GTP Fosfohidrolasas/fisiología , Glucólisis , Inmunidad Innata/inmunología , Macroautofagia , Macrófagos/inmunología , Mitocondrias/inmunología , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/microbiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
3.
Cells ; 9(3)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155958

RESUMEN

Peroxisome proliferator-activated receptor α (PPARα) shows promising potential to enhance host defenses against Mycobacterium tuberculosis infection. Herein we evaluated the protective effect of PPARα against nontuberculous mycobacterial (NTM) infections. Using a rapidly growing NTM species, Mycobacterium abscessus (Mabc), we found that the intracellular bacterial load and histopathological damage were increased in PPARα-null mice in vivo. In addition, PPARα deficiency led to excessive production of proinflammatory cytokines and chemokines after infection of the lung and macrophages. Notably, administration of gemfibrozil (GEM), a PPARα activator, significantly reduced the in vivo Mabc load and inflammatory response in mice. Transcription factor EB was required for the antimicrobial response against Mabc infection. Collectively, these results suggest that manipulation of PPARα activation has promising potential as a therapeutic strategy for NTM disease.


Asunto(s)
Gemfibrozilo/uso terapéutico , Hipolipemiantes/uso terapéutico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , PPAR alfa/uso terapéutico , Animales , Gemfibrozilo/farmacología , Humanos , Hipolipemiantes/farmacología , Masculino , Ratones , PPAR alfa/farmacología
4.
Semin Cell Dev Biol ; 101: 51-58, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31351226

RESUMEN

Xenophagy is a selective form of autophagy targeting intracellular pathogens for lysosomal degradation. Accordingly, bacteria have evolved multiple strategies to evade or minimize autophagy and xenophagy to survive and replicate in host cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that play key roles in host cells by modulating immune and inflammatory responses during infection. Accumulating evidence shows that miRNAs influence the outcome of bacterial infection by regulating canonical autophagy and xenophagy responses in host cells. Despite recent advances, we are only just beginning to understand the role miRNAs play in autophagy processes and how it affects the outcome of host-pathogen interactions in various bacterial infections. In this review, we focus on how Mycobacteria, Listeria, and Helicobacter evade host protective immune responses using miRNA-dependent mechanisms to suppress autophagy. These efforts include recent insights into the crosstalk between miRNAs and autophagy pathways, and how these interactions may be targeted in the search for new therapeutics against bacterial infections.


Asunto(s)
Autofagia/inmunología , Infecciones Bacterianas/inmunología , Interacciones Huésped-Patógeno/inmunología , MicroARNs/inmunología , Animales , Infecciones Bacterianas/patología , Humanos
5.
Exp Mol Med ; 51(12): 1-10, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827065

RESUMEN

Mycobacterium tuberculosis (Mtb) is a major causal pathogen of human tuberculosis (TB), which is a serious health burden worldwide. The demand for the development of an innovative therapeutic strategy to treat TB is high due to drug-resistant forms of TB. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents and small molecules may be beneficial in restricting intracellular Mtb infection, even with multidrug-resistant Mtb strains. Recent studies have revealed the essential roles of host nuclear receptors (NRs) in the activation of the host defense through antibacterial autophagy against Mtb infection. In particular, we discuss the function of estrogen-related receptor (ERR) α and peroxisome proliferator-activated receptor (PPAR) α in autophagy regulation to improve host defenses against Mtb infection. Despite promising findings relating to the antitubercular effects of various agents, our understanding of the molecular mechanism by which autophagy-activating agents suppress intracellular Mtb in vitro and in vivo is lacking. An improved understanding of the antibacterial autophagic mechanisms in the innate host defense will eventually lead to the development of new therapeutic strategies for human TB.


Asunto(s)
Autofagia/fisiología , Mycobacterium/inmunología , Mycobacterium/patogenicidad , Animales , Autofagia/inmunología , Humanos , Modelos Biológicos , PPAR alfa/metabolismo
6.
Autophagy ; 15(8): 1356-1375, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30774023

RESUMEN

SIRT3 (sirtuin 3), a mitochondrial protein deacetylase, maintains respiratory function, but its role in the regulation of innate immune defense is largely unknown. Herein, we show that SIRT3 coordinates mitochondrial function and macroautophagy/autophagy activation to promote anti-mycobacterial responses through PPARA (peroxisome proliferator activated receptor alpha). SIRT3 deficiency enhanced inflammatory responses and mitochondrial dysfunction, leading to defective host defense and pathological inflammation during mycobacterial infection. Antibody-mediated depletion of polymorphonuclear neutrophils significantly increased protection against mycobacterial infection in sirt3-/- mice. In addition, mitochondrial oxidative stress promoted excessive inflammation induced by Mycobacterium tuberculosis infection in sirt3-/- macrophages. Notably, SIRT3 was essential for the enhancement of PPARA, a key regulator of mitochondrial homeostasis and autophagy activation in the context of infection. Importantly, overexpression of either PPARA or TFEB (transcription factor EB) in sirt3-/- macrophages recovered antimicrobial activity through autophagy activation. Furthermore, pharmacological activation of SIRT3 enhanced antibacterial autophagy and functional mitochondrial pools during mycobacterial infection. Finally, the levels of SIRT3 and PPARA were downregulated and inversely correlated with TNF (tumor necrosis factor) levels in peripheral blood mononuclear cells from tuberculosis patients. Collectively, these data demonstrate a previously unappreciated function of SIRT3 in orchestrating mitochondrial and autophagic functions to promote antimycobacterial responses. Abbreviations: Ab: antibody; BCG: M. bovis Bacillus Calmette-Guérin; Baf-A1: bafilomycin A1; BMDMs: bone marrow-derived macrophages; CFU: colony forming unit; CXCL5: C-X-C motif chemokine ligand 5; EGFP: enhanced green fluorescent protein; ERFP: enhanced red fluorescent protein; FOXO3: forkhead box O3; HC: healthy controls; H&E: haematoxylin and eosin; HKL: honokiol; IHC: immunohistochemistry; IL1B: interleukin 1 beta; IL6: interleukin 6; IL12B: interleukin 12B; MDMs: monocyte-derived macrophages; MMP: mitochondrial membrane potential; Mtb: Mycobacterium tuberculosis; PBMC: peripheral blood mononuclear cells; PBS: phosphate buffered saline; PMN: polymorphonuclear neutrophil; PPARA: peroxisome proliferator activated receptor alpha; ROS: reactive oxygen species; SIRT3: sirtuin 3; TB: tuberculosis; TEM: transmission electron microscopy; TFEB: transcription factor EB; TNF: tumor necrosis factor.


Asunto(s)
Antibacterianos/metabolismo , Autofagia , Mitocondrias/metabolismo , Mycobacterium/metabolismo , Sirtuina 3/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Femenino , Homeostasis , Humanos , Inflamación/patología , Pulmón/microbiología , Pulmón/patología , Pulmón/ultraestructura , Lisosomas/metabolismo , Lisosomas/ultraestructura , Macrófagos/microbiología , Macrófagos/ultraestructura , Masculino , Persona de Mediana Edad , Mitocondrias/ultraestructura , Mycobacterium/ultraestructura , Neutrófilos/patología , Estrés Oxidativo , PPAR alfa/metabolismo , Fagosomas/metabolismo , Fagosomas/ultraestructura , Sirtuina 3/deficiencia , Tuberculosis/sangre , Tuberculosis/microbiología , Tuberculosis/patología , Factor de Necrosis Tumoral alfa/metabolismo
7.
Nat Commun ; 9(1): 4184, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305619

RESUMEN

Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the brain; however, the roles of GABA in antimicrobial host defenses are largely unknown. Here we demonstrate that GABAergic activation enhances antimicrobial responses against intracellular bacterial infection. Intracellular bacterial infection decreases GABA levels in vitro in macrophages and in vivo in sera. Treatment of macrophages with GABA or GABAergic drugs promotes autophagy activation, enhances phagosomal maturation and antimicrobial responses against mycobacterial infection. In macrophages, the GABAergic defense is mediated via macrophage type A GABA receptor (GABAAR), intracellular calcium release, and the GABA type A receptor-associated protein-like 1 (GABARAPL1; an Atg8 homolog). Finally, GABAergic inhibition increases bacterial loads in mice and zebrafish in vivo, suggesting that the GABAergic defense plays an essential function in metazoan host defenses. Our study identified a previously unappreciated role for GABAergic signaling in linking antibacterial autophagy to enhance host innate defense against intracellular bacterial infection.


Asunto(s)
Autofagia , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Interacciones Huésped-Patógeno , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo , Adenilato Quinasa/metabolismo , Animales , Antibacterianos/farmacología , Autofagia/efectos de los fármacos , Calcio/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fagosomas/ultraestructura , Receptores de GABA/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Mol Cells ; 41(1): 55-64, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29370694

RESUMEN

Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.


Asunto(s)
Autofagia , Proteínas de la Membrana/metabolismo , Peroxisomas/metabolismo , Síndrome de Zellweger/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Modelos Biológicos , Síndrome de Zellweger/patología
9.
Autophagy ; 14(1): 152-168, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28841353

RESUMEN

The orphan nuclear receptor ESRRA (estrogen-related receptor α) is a key regulator of energy homeostasis and mitochondrial function. Macroautophagy/autophagy, an intracellular degradation process, is a critical innate effector against intracellular microbes. Here, we demonstrate that ESRRA is required for the activation of autophagy to promote innate antimicrobial defense against mycobacterial infection. AMP-activated protein kinase pathway and SIRT1 (sirtuin 1) activation led to induction of ESRRA, which is essential for autophagosome formation, in bone marrow-derived macrophages. ESRRA enhanced the transcriptional activation of numerous autophagy-related (Atg) genes containing ERR response elements in their promoter regions. Furthermore, ESRRA, operating in a feed-forward loop with SIRT1, was required for autophagy activation through deacetylation of ATG5, BECN1, and ATG7. Importantly, ESRRA deficiency resulted in a decrease of phagosomal maturation and antimicrobial responses against mycobacterial infection. Thus, we identify ESRRA as a critical activator of autophagy via both transcriptional and post-translational control to promote antimicrobial host responses.


Asunto(s)
Autofagia/inmunología , Inmunidad Innata , Receptores de Estrógenos/metabolismo , Sirtuina 1/metabolismo , Tuberculosis/inmunología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/metabolismo , Beclina-1/metabolismo , Humanos , Inmunidad Innata/genética , Macrófagos , Ratones , Ratones Noqueados , Receptores de Estrógenos/genética , Transducción de Señal/genética , Receptor Relacionado con Estrógeno ERRalfa
10.
J Immunol ; 198(8): 3283-3295, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28275133

RESUMEN

The role of peroxisome proliferator-activated receptor α (PPAR-α) in innate host defense is largely unknown. In this study, we show that PPAR-α is essential for antimycobacterial responses via activation of transcription factor EB (TFEB) transcription and inhibition of lipid body formation. PPAR-α deficiency resulted in an increased bacterial load and exaggerated inflammatory responses during mycobacterial infection. PPAR-α agonists promoted autophagy, lysosomal biogenesis, phagosomal maturation, and antimicrobial defense against Mycobacterium tuberculosis or M. bovis bacillus Calmette-Guérin. PPAR-α agonists regulated multiple genes involved in autophagy and lysosomal biogenesis, including Lamp2, Rab7, and Tfeb in bone marrow-derived macrophages. Silencing of TFEB reduced phagosomal maturation and antimicrobial responses, but increased macrophage inflammatory responses during mycobacterial infection. Moreover, PPAR-α activation promoted lipid catabolism and fatty acid ß-oxidation in macrophages during mycobacterial infection. Taken together, our data indicate that PPAR-α mediates antimicrobial responses to mycobacterial infection by inducing TFEB and lipid catabolism.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/inmunología , Inmunidad Innata/inmunología , Metabolismo de los Lípidos/inmunología , Infecciones por Mycobacterium/inmunología , PPAR alfa/inmunología , Animales , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Immunoblotting , Inmunohistoquímica , Gotas Lipídicas/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium , PPAR alfa/metabolismo , Reacción en Cadena de la Polimerasa
11.
Autophagy ; 13(2): 423-441, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27764573

RESUMEN

Autophagy is an important antimicrobial effector process that defends against Mycobacterium tuberculosis (Mtb), the human pathogen causing tuberculosis (TB). MicroRNAs (miRNAs), endogenous noncoding RNAs, are involved in various biological functions and act as post-transcriptional regulators to target mRNAs. The process by which miRNAs affect antibacterial autophagy and host defense mechanisms against Mtb infections in human monocytes and macrophages is largely uncharacterized. In this study, we show that Mtb significantly induces the expression of MIR144*/hsa-miR-144-5p, which targets the 3'-untranslated region of DRAM2 (DNA damage regulated autophagy modulator 2) in human monocytes and macrophages. Mtb infection downregulated, whereas the autophagy activators upregulated, DRAM2 expression in human monocytes and macrophages by activating AMP-activated protein kinase. In addition, overexpression of MIR144* decreased DRAM2 expression and formation of autophagosomes in human monocytes, whereas inhibition of MIR144* had the opposite effect. Moreover, the levels of MIR144* were elevated, whereas DRAM2 levels were reduced, in human peripheral blood cells and tissues in TB patients, indicating the clinical significance of MIR144* and DRAM2 in human TB. Notably, DRAM2 interacted with BECN1 and UVRAG, essential components of the autophagic machinery, leading to displacement of RUBCN from the BECN1 complex and enhancement of Ptdlns3K activity. Furthermore, MIR144* and DRAM2 were critically involved in phagosomal maturation and enhanced antimicrobial effects against Mtb. Our findings identify a previously unrecognized role of human MIR144* in the inhibition of antibacterial autophagy and the innate host immune response to Mtb. Additionally, these data reveal that DRAM2 is a key coordinator of autophagy activation that enhances antimicrobial activity against Mtb.


Asunto(s)
Antiinfecciosos/farmacología , Autofagia/efectos de los fármacos , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Monocitos/microbiología , Mycobacterium tuberculosis/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Secuencia de Bases , Beclina-1/metabolismo , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , MicroARNs/genética , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Fagosomas/efectos de los fármacos , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica/efectos de los fármacos , Tuberculosis/genética , Tuberculosis/microbiología , Tuberculosis/patología , Regulación hacia Arriba/efectos de los fármacos
12.
Microbes Infect ; 19(1): 5-17, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27637463

RESUMEN

Mycobacterial ESX systems are often related to pathogenesis during infection. However, little is known about the function of ESX systems of Mycobacterium abscessus (Mab). This study focuses on the Mab ESX-3 cluster, which contains major genes such as esxH (Rv0288, low molecular weight protein antigen 7; CFP-7) and esxG (Rv0287, ESAT-6 like protein). An esx-3 (MAB 2224c-2234c)-deletional mutant of Mab (Δesx) was constructed and used to infect murine and human macrophages. We then investigated whether Mab Δesx modulated innate host immune responses in macrophages. Mab Δesx infection resulted in less pathological and inflammatory responses. Additionally, Δesx resulted in significantly decreased activation of inflammatory signaling and cytokine production in macrophages compared to WT. Moreover, recombinant EsxG·EsxH (rEsxGH) proteins encoded by the ESX-3 region showed synergistic enhancement of inflammatory cytokine generation in macrophages infected with Δesx. Taken together, our data suggest that Mab ESX-3 plays an important role in inflammatory and pathological responses during Mab infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Familia de Multigenes , Mycobacterium/patogenicidad , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Citocinas/metabolismo , Femenino , Eliminación de Gen , Voluntarios Sanos , Humanos , Inmunidad Innata , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Mycobacterium/genética , Factores de Virulencia/genética
13.
Radiat Res ; 187(1): 32-41, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28001907

RESUMEN

During radiotherapy for tumors, the innate immune system also responds to ionizing radiation and induces immune modulation. However, little is known about the molecular mechanisms by which radiation modulates innate immune responses. In this study, we observed that radiation triggered the generation of mitochondrial reactive oxygen species (mROS), leading to innate immune responses in murine bone marrow-derived macrophages (BMDM). Radiation-induced mROS was essential for robust induction of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-12p40 mRNA and protein in BMDM. Exposure to radiation also led to rapid activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways in BMDM. Notably, radiation-induced MAPK activation and NF-κB signaling were regulated by mROS in macrophages. Additionally, radiation-induced expression of TNF-α, IL-6 and IL-12p40 was dependent on JNK, p38 and NF-κB activation in BMDM. These data suggest a key role for radiation-induced pro-inflammatory responses and activation of the MAPK and NF-κB pathways through a triggering mechanism involving mROS generation.


Asunto(s)
Macrófagos/inmunología , Macrófagos/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Animales , Células de la Médula Ósea/citología , Activación Enzimática/efectos de la radiación , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Interleucina-1beta/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
J Microbiol ; 53(12): 864-74, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26626357

RESUMEN

Mycobacterium chelonae (Mch) is an atypical rapidly growing mycobacterium (RGM) that belongs to the M. chelonae complex, which can cause a variety of human infections. During this type of mycobacterial infection, macrophage-derived chemokines play an important role in the mediation of intracellular communication and immune surveillance by which they orchestrate cellular immunity. However, the intracellular signaling pathways involved in the macrophage-induced chemokine production during Mch infections remain unknown. Thus, the present study aimed to determine the molecular mechanisms by which Mch activates the gene expressions of chemokine (C-C motif) ligand 2 (CCL2) and CCL5 in murine bone marrow-derived macrophages (BMDMs) and in vivo mouse model. Toll-like receptor 2 (TLR2)-deficient mice showed increased bacterial burden in spleen and lung and decreased protein expression of CCL2 and CCL5 in serum. Additionally, Mch infection triggered the mRNA and protein expression of CCL2 and CCL5 in BMDMs via TLR2 and myeloid differentiation primary response gene 88 (MyD88) signaling and that it rapidly activated nuclear factor (NF)-κB signaling, which is required for the Mch-induced expressions of CCL2 and CCL5 in BMDMs. Moreover, while the innate receptor Dectin-1 was only partly involved in the Mch-induced expression of the CCL2 and CCL5 chemokines in BMDMs, the generation of intracellular reactive oxygen species (ROS) was an important contributor to these processes. Taken together, the present data indicate that the TLR2, MyD88, and NF-κB pathways, Dectin-1 signaling, and intracellular ROS generation contribute to the Mch-mediated expression of chemokine genes in BMDMs.


Asunto(s)
Quimiocina CCL2/inmunología , Quimiocina CCL5/inmunología , Inmunidad Innata , Macrófagos/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium chelonae/inmunología , Animales , Quimiocina CCL2/genética , Quimiocina CCL5/genética , Modelos Animales de Enfermedad , Inmunidad Celular , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
J Clin Immunol ; 34(2): 212-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24402617

RESUMEN

Mycobacterium massiliense (Mmass) is an emerging, rapidly growing mycobacterium (RGM) that belongs to the M. abscessus (Mabc) group, albeit clearly differentiated from Mabc. Compared with M. tuberculosis, a well-characterized human pathogen, the host innate immune response against Mmass infection is largely unknown. In this study, we show that Mmass robustly activates mRNA and protein expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in murine bone marrow-derived macrophages (BMDMs). Toll-like receptor (TLR)-2 and myeloid differentiation primary response gene 88 (MyD88), but neither TLR4 nor Dectin-1, are involved in Mmass-induced TNF-α or IL-6 production in BMDMs. Mmass infection also activates the mitogen-activated protein kinase (MAPKs; c-Jun N-terminal kinase (JNK), ERK1/2 and p38 MAPK) pathway. Mmass-induced TNF-α and IL-6 production was dependent on JNK activation, while they were unaffected by either the ERK1/2 or p38 pathway in BMDMs. Additionally, intracellular reactive oxygen species (ROS), NADPH oxidase-2, and nuclear factor-κB are required for Mmass-induced proinflammatory cytokine generation in macrophages. Furthermore, the S morphotype of Mmass showed lower overall induction of pro-inflammatory (TNF-α, IL-6, and IL-1ß) and anti-inflammatory (IL-10) cytokines than the R morphotype, suggesting fewer immunogenic characteristics for this clinical strain. Together, these results suggest that Mmass-induced activation of host proinflammatory cytokines is mediated through TLR2-dependent JNK and ROS signaling pathways.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/metabolismo , Mycobacterium/inmunología , Receptor Toll-Like 2/metabolismo , Animales , Línea Celular Tumoral , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Infecciones por Mycobacterium/genética , Factor 88 de Diferenciación Mieloide/metabolismo , NADPH Oxidasa 2 , NADPH Oxidasas/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Receptor Toll-Like 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA