Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Biotechnol ; 33(12): 2755-2760, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39184985

RESUMEN

This study represents a visual detection for total biogenic monoamines with naked eye as a simple and rapid semi-quantitative method for biogenic amine monitoring. The equivalent reaction of H2O2 with ascorbic acid resulted in color development by an amine oxidase-peroxidase coupling reaction in the samples containing the biogenic monoamines higher than the subjected ascorbic acid by 10 µM. Upon employing the commercial doenjang extracts as a model food, an additional heating step was requested, and the expected ranges for the biogenic monoamines from 360 to 480 µM covered the real contents of the samples (360.2-407.3 µM). Therefore, this visual detection method makes it possible to decide with naked eye whether the sample contains the biogenic monoamines higher than the ascorbic acid supplemented as much as a control level on manufacturing sites without instrumental analysis.

2.
Commun Chem ; 7(1): 160, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034323

RESUMEN

2-Hydroxyacyl-CoA lyase/synthase (HACL/S) is a thiamine diphosphate (ThDP)-dependent versatile enzyme originally discovered in the mammalian α-oxidation pathway. HACL/S natively cleaves 2-hydroxyacyl-CoAs and, in its reverse direction, condenses formyl-CoA with aldehydes or ketones. The one-carbon elongation biochemistry based on HACL/S has enabled the use of molecules derived from greenhouse gases as biomanufacturing feedstocks. We investigated several HACL/S family members with high activity in the condensation of formyl-CoA and aldehydes, and distinct chain-length specificities and kinetic parameters. Our analysis revealed the structures of enzymes in complex with acyl-CoA substrates and products, several covalent intermediates, bound ThDP and ADP, as well as the C-terminal active site region. One of these observed states corresponds to the intermediary α-carbanion with hydroxymethyl-CoA covalently attached to ThDP. This research distinguishes HACL/S from related sub-families and identifies key residues involved in substrate binding and catalysis. These findings expand our knowledge of acyloin-condensation biochemistry and offer attractive prospects for biocatalysis using carbon elongation.

3.
iScience ; 27(2): 108976, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327783

RESUMEN

Coronavirus nucleocapsid protein (NP) of SARS-CoV-2 plays a central role in many functions important for virus proliferation including packaging and protecting genomic RNA. The protein shares sequence, structure, and architecture with nucleocapsid proteins from betacoronaviruses. The N-terminal domain (NPRBD) binds RNA and the C-terminal domain is responsible for dimerization. After infection, NP is highly expressed and triggers robust host immune response. The anti-NP antibodies are not protective and not neutralizing but can effectively detect viral proliferation soon after infection. Two structures of SARS-CoV-2 NPRBD were determined providing a continuous model from residue 48 to 173, including RNA binding region and key epitopes. Five structures of NPRBD complexes with human mAbs were isolated using an antigen-bait sorting. Complexes revealed a distinct complement-determining regions and unique sets of epitope recognition. This may assist in the early detection of pathogens and designing peptide-based vaccines. Mutations that significantly increase viral load were mapped on developed, full length NP model, likely impacting interactions with host proteins and viral RNA.

4.
Proc Natl Acad Sci U S A ; 121(3): e2312455121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194450

RESUMEN

Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.


Asunto(s)
Saltamontes , Toxinas Biológicas , Sistemas de Secreción Tipo VII , Animales , Sistemas de Secreción Tipo VII/genética , Citoplasma
5.
Acta Crystallogr D Struct Biol ; 79(Pt 12): 1094-1108, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971797

RESUMEN

Cyanase plays a vital role in the detoxification of cyanate and supplies a continuous nitrogen source for soil microbes by converting cyanate to ammonia and carbon dioxide in a bicarbonate-dependent reaction. The structures of cyanase complexed with dianion inhibitors, in conjunction with biochemical studies, suggest putative binding sites for substrates. However, the substrate-recognition and reaction mechanisms of cyanase remain unclear. Here, crystal structures of cyanase from Escherichia coli were determined in the native form and in complexes with cyanate, bicarbonate and intermediates at 1.5-1.9 Šresolution using synchrotron X-rays and an X-ray free-electron laser. Cyanate and bicarbonate interact with the highly conserved Arg96, Ser122 and Ala123 in the active site. In the presence of a mixture of cyanate and bicarbonate, three different electron densities for intermediates were observed in the cyanase structures. Moreover, the observed electron density could explain the dynamics of the substrate or product. In addition to conformational changes in the substrate-binding pocket, dynamic movement of Leu151 was observed, which functions as a gate for the passage of substrates or products. These findings provide a structural mechanism for the substrate-binding and reaction process of cyanase.


Asunto(s)
Bicarbonatos , Escherichia coli , Bicarbonatos/metabolismo , Bicarbonatos/farmacología , Liasas de Carbono-Nitrógeno/química , Cianatos/metabolismo , Cianatos/farmacología
6.
Microbiol Resour Announc ; 12(10): e0050723, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37747257

RESUMEN

Clostridioides difficile causes life-threatening gastrointestinal infections. It is a high-risk pathogen due to a lack of effective treatments, antimicrobial resistance, and a poorly conserved genomic core. Herein, we report 30 X-ray structures from a structure genomics pipeline spanning 13 years, representing 10.2% of the X-ray structures for this important pathogen.

7.
Appl Microbiol Biotechnol ; 107(19): 5999-6011, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548665

RESUMEN

Anaerobic fungi found in the guts of large herbivores are prolific biomass degraders whose genomes harbor a wealth of carbohydrate-active enzymes (CAZymes), of which only a handful are structurally or biochemically characterized. Here, we report the structure and kinetic rate parameters for a glycoside hydrolase (GH) family 5 subfamily 4 enzyme (CelD) from Piromyces finnis, a modular, cellulosome-incorporated endoglucanase that possesses three GH5 domains followed by two C-terminal fungal dockerin domains (double dockerin). We present the crystal structures of an apo wild-type CelD GH5 catalytic domain and its inactive E154A mutant in complex with cellotriose at 2.5 and 1.8 Å resolution, respectively, finding the CelD GH5 catalytic domain adopts the (ß/α)8-barrel fold common to many GH5 enzymes. Structural superimposition of the apo wild-type structure with the E154A mutant-cellotriose complex supports a catalytic mechanism in which the E154 carboxylate side chain acts as an acid/base and E278 acts as a complementary nucleophile. Further analysis of the cellotriose binding pocket highlights a binding groove lined with conserved aromatic amino acids that when docked with larger cellulose oligomers is capable of binding seven glucose units and accommodating branched glucan substrates. Activity analyses confirm P. finnis CelD can hydrolyze mixed linkage glucan and xyloglucan, as well as carboxymethylcellulose (CMC). Measured kinetic parameters show the P. finnis CelD GH5 catalytic domain has CMC endoglucanase activity comparable to other fungal endoglucanases with kcat = 6.0 ± 0.6 s-1 and Km = 7.6 ± 2.1 g/L CMC. Enzyme kinetics were unperturbed by the addition or removal of the native C-terminal dockerin domains as well as the addition of a non-native N-terminal dockerin, suggesting strict modularity among the domains of CelD. KEY POINTS: • Anaerobic fungi host a wealth of industrially useful enzymes but are understudied. • P. finnis CelD has endoglucanase activity and structure common to GH5_4 enzymes. • CelD's kinetics do not change with domain fusion, exhibiting high modularity.


Asunto(s)
Celulasa , Piromyces , Celulasa/metabolismo , Anaerobiosis , Glucanos/metabolismo , Piromyces/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(14): e2213771120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989297

RESUMEN

Bacteria produce a variety of nucleotide second messengers to adapt to their surroundings. Although chemically similar, the nucleotides guanosine penta- and tetraphosphate [(p)ppGpp] and adenosine penta- and tetraphosphate [(p)ppApp] have distinct functions in bacteria. (p)ppGpp mediates survival under nutrient-limiting conditions and its intracellular levels are regulated by synthetases and hydrolases belonging to the RelA-SpoT homolog (RSH) family of enzymes. By contrast, (p)ppApp is not known to be involved in nutrient stress responses and is synthesized by RSH-resembling toxins that inhibit the growth of bacterial cells. However, it remains unclear whether there exists a family of hydrolases that specifically act on (p)ppApp to reverse its toxic effects. Here, we present the structure and biochemical characterization of adenosine 3'-pyrophosphohydrolase 1 (Aph1), the founding member of a monofunctional (p)ppApp hydrolase family of enzymes. Our work reveals that Aph1 adopts a histidine-aspartate (HD)-domain fold characteristic of phosphohydrolase metalloenzymes and its activity mitigates the growth inhibitory effects of (p)ppApp-synthesizing toxins. Using an informatic approach, we identify over 2,000 putative (p)ppApp hydrolases that are widely distributed across bacterial phyla and found in diverse genomic contexts, and we demonstrate that 12 representative members hydrolyze ppApp. In addition, our in silico analyses reveal a unique molecular signature that is specific to (p)ppApp hydrolases, and we show that mutation of two residues within this signature broadens the specificity of Aph1 to promiscuously hydrolyze (p)ppGpp in vitro. Overall, our findings indicate that like (p)ppGpp hydrolases, (p)ppApp hydrolases are widespread in bacteria and may play important and underappreciated role(s) in bacterial physiology.


Asunto(s)
Proteínas Bacterianas , Toxinas Biológicas , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Guanosina Pentafosfato , Bacterias/genética , Ligasas/genética , Hidrolasas/genética , Adenosina , Guanosina Tetrafosfato
9.
Plants (Basel) ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986958

RESUMEN

Panax ginseng Meyer grows in east Russia and Asia. There is a high demand for this crop due to its medicinal properties. However, its low reproductive efficiency has been a hindrance to the crop's widespread use. This study aims to establish an efficient regeneration and acclimatization system for the crop. The type of basal media and strength were evaluated for their effects on somatic embryogenesis, germination, and regeneration. The highest rate of somatic embryogenesis was achieved for the basal media MS, N6, and GD, with the optimal nitrogen content (≥35 mM) and NH4+/NO3- ratio (1:2 or 1:4). The full-strength MS medium was the best one for somatic embryo induction. However, the diluted MS medium had a more positive effect on embryo maturation. Additionally, the basal media affected shooting, rooting, and plantlet formation. The germination medium containing 1/2 MS facilitated good shoot development; however, the medium with 1/2 SH yielded outstanding root development. In vitro-grown roots were successfully transferred to soil, and they exhibited a high survival rate (86.3%). Finally, the ISSR marker analysis demonstrated that the regenerated plants were not different from the control. The obtained results provide valuable information for a more efficient micropropagation of various P. ginseng cultivars.

10.
Proteins ; 91(3): 293-299, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36201627

RESUMEN

In Gram-negative bacteria, lipopolysaccharide (LPS) is an essential component of the asymmetric outer membrane (OM). LptE is an OM lipoprotein that forms a complex with the ß-barrel OM protein, LptD. Incorporation of LPS into the OM outer leaflet is essential for bacterial viability, and mediated by the LptD/E complex. The genome of Campylobacter jejuni, a major foodborne pathogen, contains over 20 putative lipoproteins including Cj1090c. Here, we report the crystal structure of Cj1090c at 2.4 Å resolution, revealing structural evidence for LptE in C. jejuni. The analysis of this crystal structure, along with the genomic context, allows us to propose the C. jejuni LPS transport system for the first time, and permits for discussion of the features of the LptD/E complex of C. jejuni.


Asunto(s)
Campylobacter jejuni , Lipopolisacáridos , Membrana Celular/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/genética , Lipopolisacáridos/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Transporte Biológico , Lipoproteínas/genética , Lipoproteínas/metabolismo
11.
J Synchrotron Radiat ; 29(Pt 5): 1141-1151, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073872

RESUMEN

Serial synchrotron crystallography enables the study of protein structures under physiological temperature and reduced radiation damage by collection of data from thousands of crystals. The Structural Biology Center at Sector 19 of the Advanced Photon Source has implemented a fixed-target approach with a new 3D-printed mesh-holder optimized for sample handling. The holder immobilizes a crystal suspension or droplet emulsion on a nylon mesh, trapping and sealing a near-monolayer of crystals in its mother liquor between two thin Mylar films. Data can be rapidly collected in scan mode and analyzed in near real-time using piezoelectric linear stages assembled in an XYZ arrangement, controlled with a graphical user interface and analyzed using a high-performance computing pipeline. Here, the system was applied to two ß-lactamases: a class D serine ß-lactamase from Chitinophaga pinensis DSM 2588 and L1 metallo-ß-lactamase from Stenotrophomonas maltophilia K279a.


Asunto(s)
Stenotrophomonas maltophilia , Biología , Cristalografía , Proteínas
12.
Acta Crystallogr D Struct Biol ; 78(Pt 8): 997-1009, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35916224

RESUMEN

Protein crystals grown in microfluidic droplets have been shown to be an effective and robust platform for storage, transport and serial crystallography data collection with a minimal impact on diffraction quality. Single macromolecular microcrystals grown in nanolitre-sized droplets allow the very efficient use of protein samples and can produce large quantities of high-quality samples for data collection. However, there are challenges not only in growing crystals in microfluidic droplets, but also in delivering the droplets into X-ray beams, including the physical arrangement, beamline and timing constraints and ease of use. Here, the crystallization of two human gut microbial hydrolases in microfluidic droplets is described: a sample-transport and data-collection approach that is inexpensive, is convenient, requires small amounts of protein and is forgiving. It is shown that crystals can be grown in 50-500 pl droplets when the crystallization conditions are compatible with the droplet environment. Local and remote data-collection methods are described and it is shown that crystals grown in microfluidics droplets and housed as an emulsion in an Eppendorf tube can be shipped from the US to the UK using a FedEx envelope, and data can be collected successfully. Details of how crystals were delivered to the X-ray beam by depositing an emulsion of droplets onto a silicon fixed-target serial device are provided. After three months of storage at 4°C, the crystals endured and diffracted well, showing only a slight decrease in diffracting power, demonstrating a suitable way to grow crystals, and to store and collect the droplets with crystals for data collection. This sample-delivery and data-collection strategy allows crystal droplets to be shipped and set aside until beamtime is available.


Asunto(s)
Microfluídica , Proteínas , Cristalización , Cristalografía por Rayos X , Recolección de Datos , Emulsiones , Humanos
13.
mBio ; 13(5): e0213722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036513

RESUMEN

Bacterial type VIIb secretion systems (T7SSb) are multisubunit integral membrane protein complexes found in Firmicutes that play a role in both bacterial competition and virulence by secreting toxic effector proteins. The majority of characterized T7SSb effectors adopt a polymorphic domain architecture consisting of a conserved N-terminal Leu-X-Gly (LXG) domain and a variable C-terminal toxin domain. Recent work has started to reveal the diversity of toxic activities exhibited by LXG effectors; however, little is known about how these proteins are recruited to the T7SSb apparatus. In this work, we sought to characterize genes encoding domains of unknown function (DUFs) 3130 and 3958, which frequently cooccur with LXG effector-encoding genes. Using coimmunoprecipitation-mass spectrometry analyses, in vitro copurification experiments, and T7SSb secretion assays, we found that representative members of these protein families form heteromeric complexes with their cognate LXG domain and in doing so, function as targeting factors that promote effector export. Additionally, an X-ray crystal structure of a representative DUF3958 protein, combined with predictive modeling of DUF3130 using AlphaFold2, revealed structural similarity between these protein families and the ubiquitous WXG100 family of T7SS effectors. Interestingly, we identified a conserved FxxxD motif within DUF3130 that is reminiscent of the YxxxD/E "export arm" found in mycobacterial T7SSa substrates and mutation of this motif abrogates LXG effector secretion. Overall, our data experimentally link previously uncharacterized bacterial DUFs to type VIIb secretion and reveal a molecular signature required for LXG effector export. IMPORTANCE Type VIIb secretion systems (T7SSb) are protein secretion machines used by an array of Gram-positive bacterial genera, including Staphylococcus, Streptococcus, Bacillus, and Enterococcus. These bacteria use the T7SSb to facilitate interbacterial killing and pathogenesis through the secretion of toxins. Although the modes of toxicity for a number of these toxins have been investigated, the mechanisms by which they are recognized and secreted by T7SSb remains poorly understood. The significance of this work is the discovery of two new protein families, termed Lap1 and Lap2, that directly interact with these toxins and are required for their secretion. Overall, Lap1 and Lap2 represent two widespread families of proteins that function as targeting factors that participate in T7SSb-dependent toxin release from Gram-positive bacteria.


Asunto(s)
Sistemas de Secreción Bacterianos , Toxinas Biológicas , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Bacterias Grampositivas/metabolismo , Proteínas de la Membrana
14.
FEBS Lett ; 596(18): 2449-2464, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876256

RESUMEN

Xylobiose is a prebiotic sugar that has applications in functional foods. This report describes the first X-ray crystallographic structure models of apo and xylobiose-bound forms of a xylobiohydrolase (XBH) from Acetivibrio clariflavus. This xylan-active enzyme, a member of the recently described glycoside hydrolase family 30 (GH30), subfamily 10, phylogenetic clade has been shown to strictly release xylobiose as its primary hydrolysis product. Inspection of the apo structure reveals a glycone region X2 -binding slot. When X2 binds, the non-reducing xylose in the -2 subsite is highly coordinated with numerous hydrogen bond contacts while contacts in the -1 subsite mostly reflect interactions typical for GH30 and enzymes in clan A of the carbohydrate-active enzymes database (CAZy). This structure provides an explanation for the high functional specificity of this new bacterial GH30 XBH subfamily.


Asunto(s)
Glicósido Hidrolasas , Xilanos , Cristalografía por Rayos X , Disacáridos , Glicósido Hidrolasas/química , Modelos Moleculares , Filogenia , Especificidad por Sustrato , Xilanos/metabolismo , Xilosa/metabolismo
15.
J Bacteriol ; 204(5): e0055521, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35435721

RESUMEN

Alpha-pore-forming toxins (α-PFTs) are secreted by many species of bacteria, including Escherichia coli, Aeromonas hydrophila, and Bacillus thuringiensis, as part of their arsenal of virulence factors, and are often cytotoxic. In particular, for α-PFTs, the membrane-spanning channel they form is composed of hydrophobic α-helices. These toxins oligomerize at the surface of target cells and transition from a soluble to a protomer state in which they expose their hydrophobic regions and insert into the membrane to form a pore. The pores may be composed of homooligomers of one component or heterooligomers with two or three components, resulting in bi- or tripartite toxins. The multicomponent α-PFTs are often expressed from a single operon. Recently, motility-associated killing factor A (MakA), an α-PFT, was discovered in Vibrio cholerae. We report that makA is found on the V. cholerae GI-10 genomic island within an operon containing genes for two other potential α-PFTs, MakB and MakE. We determined the X-ray crystal structures for MakA, MakB, and MakE and demonstrated that all three are structurally related to the α-PFT family in the soluble state, and we modeled their protomer state based on the α-PFT AhlB from A. hydrophila. We found that MakA alone is cytotoxic at micromolar concentrations. However, combining MakA with MakB and MakE is cytotoxic at nanomolar concentrations, with specificity for J774 macrophage cells. Our data suggest that MakA, -B, and -E are α-PFTs that potentially act as a tripartite pore-forming toxin with specificity for phagocytic cells. IMPORTANCE The bacterium Vibrio cholerae causes gastrointestinal, wound, and skin infections. The motility-associated killing factor A (MakA) was recently shown to be cytotoxic against colon, prostate, and other cancer cells. However, at the outset of this study, the capacity of MakA to damage cells in combination with other Mak proteins encoded in the same operon had not been elucidated. We determined the structures of three Mak proteins and established that they are structurally related to the α-PFTs. Compared to MakA alone, the combination of all three toxins was more potent specifically in mouse macrophages. This study highlights the idea that the Mak toxins are selectively cytotoxic and thus may function as a tripartite toxin with cell type specificity.


Asunto(s)
Vibrio cholerae , Animales , Citotoxinas/genética , Citotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Islas Genómicas , Ratones , Proteínas Citotóxicas Formadoras de Poros , Subunidades de Proteína/metabolismo , Vibrio cholerae/metabolismo , Factores de Virulencia/metabolismo
16.
Microbiol Spectr ; 10(2): e0013922, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35195438

RESUMEN

Phylogenetically diverse bacteria can carry out chloramphenicol reduction, but only a single enzyme has been described that efficiently catalyzes this reaction, the NfsB nitroreductase from Haemophilus influenzae strain KW20. Here, we tested the hypothesis that some NfsB homologs function as housekeeping enzymes with the potential to become chloramphenicol resistance enzymes. We found that expression of H. influenzae and Neisseria spp. nfsB genes, but not Pasteurella multocida nfsB, allows Escherichia coli to resist chloramphenicol by nitroreduction. Mass spectrometric analysis confirmed that purified H. influenzae and N. meningitides NfsB enzymes reduce chloramphenicol to amino-chloramphenicol, while kinetics analyses supported the hypothesis that chloramphenicol reduction is a secondary activity. We combined these findings with atomic resolution structures of multiple chloramphenicol-reducing NfsB enzymes to identify potential key substrate-binding pocket residues. Our work expands the chloramphenicol reductase family and provides mechanistic insights into how a housekeeping enzyme might confer antibiotic resistance. IMPORTANCE The question of how new enzyme activities evolve is of great biological interest and, in the context of antibiotic resistance, of great medical importance. Here, we have tested the hypothesis that new antibiotic resistance mechanisms may evolve from promiscuous housekeeping enzymes that have antibiotic modification side activities. Previous work identified a Haemophilus influenzae nitroreductase housekeeping enzyme that has the ability to give Escherichia coli resistance to the antibiotic chloramphenicol by nitroreduction. Herein, we extend this work to enzymes from other Haemophilus and Neisseria strains to discover that expression of chloramphenicol reductases is sufficient to confer chloramphenicol resistance to Es. coli, confirming that chloramphenicol reductase activity is widespread across this nitroreductase family. By solving the high-resolution crystal structures of active chloramphenicol reductases, we identified residues important for this activity. Our work supports the hypothesis that housekeeping proteins possessing multiple activities can evolve into antibiotic resistance enzymes.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacología , Cloranfenicol/metabolismo , Cloranfenicol/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Nitrorreductasas/química , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Oxidorreductasas/genética
17.
Methods Enzymol ; 661: 407-431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776222

RESUMEN

We present a Chemistry and Structure Screen Integrated Efficiently (CASSIE) approach (named for Greek prophet Cassandra) to design inhibitors for cancer biology and pathogenesis. CASSIE provides an effective path to target master keys to control the repair-replication interface for cancer cells and SARS CoV-2 pathogenesis as exemplified here by specific targeting of Poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribose glycohydrolase ARH3 macrodomains plus SARS CoV-2 nonstructural protein 3 (Nsp3) Macrodomain 1 (Mac1) and Nsp15 nuclease. As opposed to the classical massive effort employing libraries with large numbers of compounds against single proteins, we make inhibitor design for multiple targets efficient. Our compact, chemically diverse, 5000 compound Goldilocks (GL) library has an intermediate number of compounds sized between fragments and drugs with predicted favorable ADME (absorption, distribution, metabolism, and excretion) and toxicological profiles. Amalgamating our core GL library with an approved drug (AD) library, we employ a combined GLAD library virtual screen, enabling an effective and efficient design cycle of ranked computer docking, top hit biophysical and cell validations, and defined bound structures using human proteins or their avatars. As new drug design is increasingly pathway directed as well as molecular and mechanism based, our CASSIE approach facilitates testing multiple related targets by efficiently turning a set of interacting drug discovery problems into a tractable medicinal chemistry engineering problem of optimizing affinity and ADME properties based upon early co-crystal structures. Optimization efforts are made efficient by a computationally-focused iterative chemistry and structure screen. Thus, we herein describe and apply CASSIE to define prototypic, specific inhibitors for PARG vs distinct inhibitors for the related macrodomains of ARH3 and SARS CoV-2 Nsp3 plus the SARS CoV-2 Nsp15 RNA nuclease.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Síndrome Respiratorio Agudo Grave , Reparación del ADN , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2
18.
Proteins ; 89(12): 1647-1672, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34561912

RESUMEN

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Biología Computacional , Microscopía por Crioelectrón , Cristalografía por Rayos X , Análisis de Secuencia de Proteína
19.
ACS Infect Dis ; 7(11): 3062-3076, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34590817

RESUMEN

Many bacterial pathogens, including Staphylococcus aureus, require inosine 5'-monophosphate dehydrogenase (IMPDH) for infection, making this enzyme a promising new target for antibiotics. Although potent selective inhibitors of bacterial IMPDHs have been reported, relatively few have displayed antibacterial activity. Here we use structure-informed design to obtain inhibitors of S. aureus IMPDH (SaIMPDH) that have potent antibacterial activity (minimal inhibitory concentrations less than 2 µM) and low cytotoxicity in mammalian cells. The physicochemical properties of the most active compounds were within typical Lipinski/Veber space, suggesting that polarity is not a general requirement for achieving antibacterial activity. Five compounds failed to display activity in mouse models of septicemia and abscess infection. Inhibitor-resistant S. aureus strains readily emerged in vitro. Resistance resulted from substitutions in the cofactor/inhibitor binding site of SaIMPDH, confirming on-target antibacterial activity. These mutations decreased the binding of all inhibitors tested, but also decreased catalytic activity. Nonetheless, the resistant strains had comparable virulence to wild-type bacteria. Surprisingly, strains expressing catalytically inactive SaIMPDH displayed only a mild virulence defect. Collectively these observations question the vulnerability of the enzymatic activity of SaIMPDH as a target for the treatment of S. aureus infections, suggesting other functions of this protein may be responsible for its role in infection.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , IMP Deshidrogenasa/genética , Inosina , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
20.
Food Sci Biotechnol ; 30(7): 971-977, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34395028

RESUMEN

Biogenic amines (BAs) produced by the action of bacterial amino acid decarboxylases in fermented foods cause various health problems in human. Despite the importance, detailed characterizations of the BA-producing decarboxylases are relatively less progressed than the studies on BA-producing bacteria, due to the time-consuming chromatography-based assay method. In this study, a simple and general colorimetric assay for aromatic amino acid decarboxylases coupled with an amine oxidase from Arthrobacter aurescens (AMAO) and horseradish peroxidase was developed using a tyrosine decarboxylase from Enterococcus faecium DSM20477 (EfmTDC) as a model enzyme. The activity profiles over pH and temperature and the kinetic analysis for EfmTDC revealed that the results by the colorimetric assay are compatible with those by the chromatographic assay. In addition, due to the broad substrate specificity of AMAO for histamine and 2-phenylethylamine, the colorimetric assay would be applicable to the characterization of other aromatic amino acid decarboxylases including histidine decarboxylases. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00938-4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...