Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Nature ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143224

RESUMEN

T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.

2.
BMC Oral Health ; 24(1): 986, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180005

RESUMEN

BACKGROUND: The screw-in effect is a tendency of a nickel-titanium (NiTi) rotary endodontic file to be pulled into the canal, which can result in a sudden increase in stress leading to instrument fracture, and over-instrumentation beyond the apex. To reduce screw-in force, repeated up-and-down movements are recommended to distribute flexural stress during instrumentation, especially in curved and constricted canals. However, there is no consensus on the optimal number of repetitions. Therefore, this study aimed to examine how repeated up-and-down movements at the working length affect torque/force generation, surface defects, and canal shaping ability of JIZAI and TruNatomy instruments. METHODS: An original automated root canal instrumentation device was used to prepare canals and to record torque/force changes. The mesial roots of human mandibular molars with approximately 30˚ of canal curvature were selected through geometric matching using micro-computed tomography. The samples were divided into three groups according to the number of up-and-down movements at the working length (1, 3, and 6 times; n = 24 each) and subdivided according to the instruments: JIZAI (#13/0.04 taper, #25/0.04 taper, and #35/0.04 taper) or TruNatomy (#17/0.02 taper, #26/0.04 taper, and #36/0.03 tape) (n = 12 each). The design, surface defects, phase transformation temperatures, nickel-titanium ratios, torque, force, shaping ability, and surface deformation were evaluated. Data were analyzed with the Kruskal-Wallis and Dunn's tests (α = 0.05). RESULTS: The instruments had different designs and phase transformation temperatures. The 3 and 6 up-and-down movements resulted in a smaller upward force compared to 1 movement (p < 0.05). TruNatomy generated significantly less maximum torque, force, and surface wear than JIZAI (p < 0.05). However, TruNatomy exhibited a larger canal deviation (p < 0.05). No statistical differences in shaping ability were detected between different up-and-down movements. CONCLUSIONS: Under laboratory conditions with JIZAI and TruNatomy, a single up-and-down movement at the working length increased the screw-in force of subsequent instruments in severely curved canals in the single-length instrumentation technique. A single up-and-down movement generated more surface defects on the file when using JIZAI. TruNatomy resulted in less stress generation during instrumentation, while JIZAI better maintained the curvature of root canals.


Asunto(s)
Níquel , Preparación del Conducto Radicular , Propiedades de Superficie , Titanio , Torque , Preparación del Conducto Radicular/instrumentación , Humanos , Níquel/química , Microtomografía por Rayos X , Estrés Mecánico , Diseño de Equipo , Aleaciones Dentales/química , Técnicas In Vitro , Ensayo de Materiales , Diente Molar , Instrumentos Dentales
3.
Pharmacol Res Perspect ; 12(4): e1249, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39017590

RESUMEN

This study assessed the pharmacokinetics (PKs) and pharmacodynamics (PDs) of two antihypertensive drugs, nifedipine and captopril, by exploring their main (blood pressure [BP]) and secondary effects (heart rate [HR] and QT interval [QT]) in spontaneously hypertensive rats. This study aimed to assess the relationship between PKs and PDs. Using these PD parameters, BP, HR, and QT during coadministration were estimated. The coadministration of nifedipine and captopril resulted in an increase in nifedipine's total body clearance (CLtot) and a reduction in its mean residence time (MRT) with an increase in the terminal elimination half-life (t1/2) and volume of distribution at steady state (Vdss) of captopril. However, no significant PK interactions were observed. During monotherapy, BP reduced rapidly following nifedipine infusion. Subsequently, despite the increase in nifedipine plasma concentration, BP recovered, likely because of homeostasis. Similar results were observed with coadministration. Subsequently, BP demonstrated a sustained reduction that was greater than or equal to the additive effect estimated from each PK. Captopril exhibited a minimal effect on HR, except for a transient increase observed immediately after starting infusion, consistent with observations during coadministration. Subsequently, the HR reduction was nearly equal to that calculated from the nifedipine PK. QT prolongation was more rapid with captopril than with nifedipine. Although QT prolongation during the initial 60 min of coadministration was approximately the sum of both effects, the recovery period to baseline QT was faster than that in the simulation.


Asunto(s)
Antihipertensivos , Presión Sanguínea , Captopril , Frecuencia Cardíaca , Hipertensión , Nifedipino , Ratas Endogámicas SHR , Captopril/farmacocinética , Captopril/administración & dosificación , Captopril/farmacología , Nifedipino/farmacocinética , Nifedipino/administración & dosificación , Nifedipino/farmacología , Animales , Antihipertensivos/farmacocinética , Antihipertensivos/administración & dosificación , Antihipertensivos/farmacología , Masculino , Ratas , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/inducido químicamente , Frecuencia Cardíaca/efectos de los fármacos , Interacciones Farmacológicas , Semivida , Quimioterapia Combinada
4.
EBioMedicine ; 106: 105256, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39059316

RESUMEN

BACKGROUND: Intestinal epithelial cells (IECs) serve as robust barriers against potentially hostile luminal antigens and commensal microbiota. Epithelial barrier dysfunction enhances intestinal permeability, leading to leaky gut syndrome (LGS) associated with autoimmune and chronic inflammatory disorders. However, a causal relationship between LGS and systemic disorders remains unclear. Ap1m2 encodes clathrin adaptor protein complex 1 subunit mu 2, which facilitates polarized protein trafficking toward the basolateral membrane and contributes to the establishment of epithelial barrier functions. METHODS: We generated IEC-specific Ap1m2-deficient (Ap1m2ΔIEC) mice with low intestinal barrier integrity as an LSG model and examined the systemic impact. FINDINGS: Ap1m2ΔIEC mice spontaneously developed IgA nephropathy (IgAN)-like features characterized by the deposition of IgA-IgG immune complexes and complement factors in the kidney glomeruli. Ap1m2 deficiency markedly enhanced aberrantly glycosylated IgA in the serum owing to downregulation and mis-sorting of polymeric immunoglobulin receptors in IECs. Furthermore, Ap1m2 deficiency caused intestinal dysbiosis by attenuating IL-22-STAT3 signaling. Intestinal dysbiosis contributed to the pathogenesis of IgAN because antibiotic treatment reduced aberrantly glycosylated IgA production and renal IgA deposition in Ap1m2ΔIEC mice. INTERPRETATION: IEC barrier dysfunction and subsequent dysbiosis by AP-1B deficiency provoke IgA deposition in the mouse kidney. Our findings provide experimental evidence of a pathological link between LGS and IgAN. FUNDING: AMED, AMED-CREST, JSPS Grants-in-Aid for Scientific Research, JST CREST, Fuji Foundation for Protein Research, and Keio University Program for the Advancement of Next Generation Research Projects.


Asunto(s)
Modelos Animales de Enfermedad , Inmunoglobulina A , Mucosa Intestinal , Glomérulos Renales , Ratones Noqueados , Animales , Ratones , Inmunoglobulina A/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Disbiosis , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/etiología , Glomerulonefritis por IGA/patología , Complejo 1 de Proteína Adaptadora/metabolismo , Complejo 1 de Proteína Adaptadora/genética , Transducción de Señal , Factor de Transcripción STAT3/metabolismo
5.
Dent Mater J ; 43(4): 552-558, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38987203

RESUMEN

This study aimed to clarify the fracture resistance of resin abutments built on endodontically treated roots with the remaining coronal teeth via static and cyclic loading tests. Endodontically treated bovine roots, which had a remaining coronal tooth covered with an occupied area for a quarter and half of the circumference at the tensile side or covered the circumference at both the tensile and compressive sides, were fabricated to build up to the resin abutment. Fracture resistance was evaluated via static and cyclic loading tests by applying a load of 30° to the tooth axis. Half of the circumference of the remaining coronal tooth showed a significantly higher static fracture load and survival rate. The remaining coronal tooth on the compressive side improved the dynamic fracture resistance associated with severe fractures. The occupied area and location of the remaining coronal tooth affected the static and dynamic fracture resistances.


Asunto(s)
Pilares Dentales , Análisis del Estrés Dental , Ensayo de Materiales , Técnica de Perno Muñón , Fracturas de los Dientes , Diente no Vital , Bovinos , Animales , Fracaso de la Restauración Dental , Resistencia a la Tracción , Técnicas In Vitro , Propiedades de Superficie
6.
Cancer Discov ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916500

RESUMEN

Acute lymphoblastic leukemia expressing the gamma delta T cell receptor (yo T-ALL) is a poorly understood disease. We studied 200 children with yo T-ALL from 13 clinical study groups to understand the clinical and genetic features of this disease. We found age and genetic drivers were significantly associated with outcome. yo T-ALL diagnosed in children under three years of age was extremely high-risk and enriched for genetic alterations that result in both LMO2 activation and STAG2 inactivation. Mechanistically, using patient samples and isogenic cell lines, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping, resulting in deregulation of gene expression associated with T-cell differentiation. High throughput drug screening identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which can be targeted by Poly(ADP-ribose) polymerase (PARP) inhibition. These data provide a diagnostic framework for classification and risk stratification of pediatric yo T-ALL.

7.
Nat Aging ; 4(8): 1053-1063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867059

RESUMEN

Chronological aging correlates with epigenetic modifications at specific loci, calibrated to species lifespan. Such 'epigenetic clocks' appear conserved among mammals, but whether they are cell autonomous and restricted by maximal organismal lifespan remains unknown. We used a multilifetime murine model of repeat vaccination and memory T cell transplantation to test whether epigenetic aging tracks with cellular replication and if such clocks continue 'counting' beyond species lifespan. Here we found that memory T cell epigenetic clocks tick independently of host age and continue through four lifetimes. Instead of recording chronological time, T cells recorded proliferative experience through modification of cell cycle regulatory genes. Applying this epigenetic profile across a range of human T cell contexts, we found that naive T cells appeared 'young' regardless of organism age, while in pediatric patients, T cell acute lymphoblastic leukemia appeared to have epigenetically aged for up to 200 years. Thus, T cell epigenetic clocks measure replicative history and can continue to accumulate well-beyond organismal lifespan.


Asunto(s)
Senescencia Celular , Epigénesis Genética , Animales , Humanos , Ratones , Senescencia Celular/genética , Senescencia Celular/inmunología , Envejecimiento/inmunología , Envejecimiento/genética , Linfocitos T/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Ratones Endogámicos C57BL , Masculino , Senescencia de Células T
8.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893328

RESUMEN

Taste sensors with an allostery approach have been studied to detect non-charged bitter substances, such as xanthine derivatives, used in foods (e.g., caffeine) or pharmaceuticals (e.g., etofylline). In this study, the authors modified a taste sensor with 3-bromo-2,6-dihydroxybenzoic acid and used it in conjunction with sensory tests to assess the bitterness of non-charged pharmaceuticals with xanthine scaffolds (i.e., acefylline and doxofylline), as well as allopurinol, an analogue of hypoxanthine. The results show that the sensor was able to differentiate between different levels of sample bitterness. For instance, when assessing a 30 mM sample solution, the sensor response to acefylline was 34.24 mV, which corresponded to the highest level of bitterness (τ = 3.50), while the response to allopurinol was lowest at 2.72 mV, corresponding to relatively weaker bitterness (τ = 0.50). Additionally, this study extended the application of the sensor to detect pentoxifylline, an active pharmaceutical ingredient in pediatric medicines. These results underscore the taste sensor's value as an additional tool for early-stage assessment and prediction of bitterness in non-charged pharmaceuticals.


Asunto(s)
Alopurinol , Gusto , Xantina , Alopurinol/química , Humanos , Xantina/química , Técnicas Biosensibles/métodos
9.
Nat Immunol ; 25(7): 1207-1217, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38802512

RESUMEN

The contribution of γδ T cells to immune responses is associated with rapid secretion of interferon-γ (IFN-γ). Here, we show a perinatal thymic wave of innate IFN-γ-producing γδ T cells that express CD8αß heterodimers and expand in preclinical models of infection and cancer. Optimal CD8αß+ γδ T cell development is directed by low T cell receptor signaling and through provision of interleukin (IL)-4 and IL-7. This population is pathologically relevant as overactive, or constitutive, IL-7R-STAT5B signaling promotes a supraphysiological accumulation of CD8αß+ γδ T cells in the thymus and peripheral lymphoid organs in two mouse models of T cell neoplasia. Likewise, CD8αß+ γδ T cells define a distinct subset of human T cell acute lymphoblastic leukemia pediatric patients. This work characterizes the normal and malignant development of CD8αß+ γδ T cells that are enriched in early life and contribute to innate IFN-γ responses to infection and cancer.


Asunto(s)
Inmunidad Innata , Interferón gamma , Receptores de Antígenos de Linfocitos T gamma-delta , Receptores de Interleucina-7 , Factor de Transcripción STAT5 , Timo , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Humanos , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Timo/inmunología , Receptores de Interleucina-7/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/inmunología , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Ratones Noqueados , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Antígenos CD8/metabolismo , Femenino , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Interleucina-7/metabolismo
10.
Mol Pharm ; 21(7): 3173-3185, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38798088

RESUMEN

This study aimed to investigate the effect of in vivo pH-responsive doxorubicin (DOX) release and the targetability of pilot molecules in folic acid (FA)-modified micelles using a pharmacokinetic-pharmacodynamic (PK-PD) model. The time profiles of intratumoral DOX concentrations in Walker256 tumor-bearing rats were monitored using a microdialysis probe, followed by compartmental analysis, to evaluate intratumoral tissue pharmacokinetics. Maximal DOX was released from micelles 350 min after the administration of pH-responsive DOX-releasing micelles. However, FA modification of the micelles shortened the time to peak drug concentration to 150 min. Additionally, FA modification resulted in a 27-fold increase in the tumor inflow rate constant. Walker256 tumor-bearing rats were subsequently treated with DOX, pH-responsive DOX-releasing micelles, and pH-responsive DOX-releasing FA-modified micelles to monitor the tumor growth-time profiles. An intratumoral threshold concentration of DOX (55-64 ng/g tumor) was introduced into the drug efficacy compartment to construct a PD model, followed by PK-PD analysis of the tumor growth-time profiles. Similar results of threshold concentration and drug potency of DOX were obtained across all three formulations. Cell proliferation was delayed as the drug delivery ability of DOX was improved. The PK model, which was developed using the microdialysis method, revealed the intratumoral pH-responsive DOX distribution profiles. This facilitated the estimation of intratumoral PK parameters. The PD model with threshold concentrations contributed to the estimation of PD parameters in the three formulations, with consistent mechanisms observed. We believe that our PK-PD model can objectively assess the contributions of pH-responsive release ability and pilot molecule targetability to pharmacological effects.


Asunto(s)
Doxorrubicina , Ácido Fólico , Micelas , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Animales , Ratas , Concentración de Iones de Hidrógeno , Ácido Fólico/química , Ácido Fólico/farmacocinética , Liberación de Fármacos , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Línea Celular Tumoral , Portadores de Fármacos/química , Femenino , Ratas Wistar , Humanos , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacología
11.
J Dent Sci ; 19(2): 929-936, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38618130

RESUMEN

Background/purpose: Temperature-dependent phase compositional changes influence the mechanical properties of heat-treated nickel-titanium (NiTi) rotary instruments. This study evaluated the phase composition, bending properties, and cyclic fatigue resistance of HyFlex EDM NiTi rotary instruments against differently heat-treated and non-heat-treated NiTi instruments at body temperature (BT). Materials and methods: HyFlex EDM OneFile (EDM) instruments, heat-treated HyFlex CM (CM) and Twisted File (TF) instruments, and non-heat-treated K3 instruments (size #25/.08) were subjected to differential scanning calorimetry, and the martensitic, R-phase, and reverse transformation starting and finishing temperatures were determined. A cantilever bending test and a cyclic fatigue test were conducted at BT (37 °C ± 1.0 °C), and the bending load and number of cycles to failure (NCF) were recorded. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results: TF and K3 had reverse transformation finishing temperatures lower than BT, while those for EDM and CM were higher than BT. The bending loads at a 0.5 mm deflection were in the order of EDM < TF < CM < K3 (P < 0.05), and those at a 2.0 mm deflection were EDM < CM and TF < K3 (P < 0.05). EDM had the highest NCF among the four instruments (P < 0.05). Conclusion: The EDM instrument had a reverse transformation finishing temperature higher than BT indicating its martensite/R-phase composition at BT. The EDM instrument had superior flexibility and greater resistance to cyclic fatigue than the CM, TF, and K3 instruments at BT.

12.
Cancer Gene Ther ; 31(7): 1049-1059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38622340

RESUMEN

Novel therapeutic strategies are urgently required for osteosarcoma, given the early age at onset and persistently high mortality rate. Modern transcriptomics techniques can identify differentially expressed genes (DEGs) that may serve as biomarkers and therapeutic targets, so we screened for DEGs in osteosarcoma. We found that osteosarcoma cases could be divided into fair and poor survival groups based on gene expression profiles. Among the genes upregulated in the poor survival group, siRNA-mediated knockdown of the glycosylation-related gene C1GALT1 suppressed osteosarcoma cell proliferation in culture. Gene expression, phosphorylation, and glycome array analyses also demonstrated that C1GALT1 is required to maintain ERK signaling and cell cycle progression. Moreover, the C1GALT1 inhibitor itraconazole suppressed osteosarcoma cell proliferation in culture, while doxycycline-induced shRNA-mediated knockdown reduced xenograft osteosarcoma growth in mice. Elevated C1GALT1 expression is a potential early predictor of poor prognosis, while pharmacological inhibition may be a feasible treatment strategy for osteosarcoma.


Asunto(s)
Ciclo Celular , Proliferación Celular , Galactosiltransferasas , Sistema de Señalización de MAP Quinasas , Osteosarcoma , Osteosarcoma/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Humanos , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Ciclo Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos
13.
Dent Mater J ; 43(3): 329-337, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583993

RESUMEN

The aim of this study was to evaluate how preset torque settings influence the torque, vertical force, and root canal-centering ability of ProGlider and ProTaper NEXT nickel-titanium rotary instruments in canals with different curvature locations. Based on micro-computed tomography, mesial roots of human mandibular molars (25°-40° curvature) were allocated to the apical curvature (apical 1-5 mm) or the middle curvature (apical 5-9 mm) groups, and mandibular incisors (curvature <5°) to the straight canal group. Each group was subjected to automated instrumentation and torque/force measurement with the preset torque of 1, 2.5, or 5 N•cm. Canal-centering ratios were determined with micro-computed tomography. Instrument fracture occurred only in the 2.5 and 5 N•cm groups in curved canals. The preset torque setting and curvature location did not influence canal shaping ability.


Asunto(s)
Níquel , Preparación del Conducto Radicular , Propiedades de Superficie , Titanio , Torque , Microtomografía por Rayos X , Humanos , Titanio/química , Níquel/química , Preparación del Conducto Radicular/instrumentación , Técnicas In Vitro , Cavidad Pulpar , Diente Molar , Instrumentos Dentales , Ensayo de Materiales , Diseño de Equipo , Aleaciones Dentales/química , Análisis del Estrés Dental
14.
Int J Pharm ; 654: 123933, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38403090

RESUMEN

Hydrophobic ion pairing (HIP) is a drug encapsulation technology that uses electrostatic interactions between a drug and an additive. However, although polymeric micelles can encapsulate hydrophobic drugs in the core, the encapsulated drug often leaks. Therefore, we designed polymeric micelles with HIP functionalized in a hydrophobic inner core using three diblock copolymers comprising polypeptides with different ratios of polar and hydrophobic amino acids and polyethylene glycol (PEG) to encapsulate indomethacin (IND). The three IND-encapsulated HIP micelles showed different area under the curve (AUC) values as an index of blood retention after intravenous injection in mice. Despite having the same PEG shell, IND-PEG-poly(H/F)n showed a 1.56-fold higher AUC than IND-PEG-poly(D/F)n. PEG interface morphologies were evaluated to determine the differences in pharmacokinetic parameters caused by changes in inner core HIP patterns. The micellarized diblock copolymer was desorbed from IND-PEG-poly(D/F)n due to electrostatic repulsion between IND and the diblock copolymer comprising aspartic acid. Our results suggest that changes in the HIP patterns of the micelle inner core affected the PEG interface morphologies, such as PEG density and diblock copolymer desorption from micelles. These phenomena might lead to changes in the interaction of plasma proteins and drug dispositions.


Asunto(s)
Indometacina , Micelas , Ratones , Animales , Indometacina/química , Polímeros/química , Polietilenglicoles/química , Péptidos , Portadores de Fármacos/química
15.
Biosensors (Basel) ; 14(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38392014

RESUMEN

A taste sensor employs various lipid/polymer membranes with specific physicochemical properties for taste classification and evaluation. However, phosphoric acid di(2-ethylhexyl) ester (PAEE), employed as one of the lipids for the taste sensors, exhibits insufficient selectivity for umami substances. The pH of sample solutions impacts the dissociation of lipids to influence the membrane potential, and the response to astringent substances makes accurate measurement of umami taste difficult. This study aims to develop a novel taste sensor for detecting umami substances like monosodium L-glutamate (MSG) through surface modification, i.e., a methodology previously applied to taste sensors for non-charged bitter substance measurement. Four kinds of modifiers were tested as membrane-modifying materials. By comparing the results obtained from these modifiers, the modifier structure suitable for measuring umami substances was identified. The findings revealed that the presence of carboxyl groups at para-position of the benzene ring, as well as intramolecular H-bonds between the carboxyl group and hydroxyl group, significantly affect the effectiveness of a modifier in the umami substance measurement. The taste sensor treated with this type of modifier showed excellent selectivity for umami substances.


Asunto(s)
Glutamato de Sodio , Gusto , Gusto/fisiología , Glutamato de Sodio/química , Lípidos
16.
Int Immunol ; 36(5): 223-240, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262747

RESUMEN

The gut microbiota plays a crucial role in maintaining epithelial barrier function. Although multiple studies have demonstrated the significance of dietary factors on the gut microbiota and mucosal barrier function, the impact of a purified diet, which has long been used in various animal experiments, on intestinal homeostasis remains to be elucidated. Here, we compared the impact of two different types of diets, a crude diet and an AIN-93G-formula purified diet, on epithelial integrity and the gut microbiota. Purified diet-fed mice exhibited shorter villi and crypt lengths and slower epithelial turnover, particularly in the ileum. In addition, antimicrobial products, including REG3γ, were substantially decreased in purified diet-fed mice. Purified diet feeding also suppressed α1,2-fucosylation on the epithelial surface. Furthermore, the purified diet induced metabolic rewiring to fatty acid oxidation and ketogenesis. 16S ribosomal RNA gene sequencing of the ileal contents and mucus layer revealed distinct gut microbiota compositions between the purified and crude diet-fed mice. Purified diet feeding reduced the abundance of segmented filamentous bacteria (SFB), which potently upregulate REG3γ and fucosyltransferase 2 (Fut2) by stimulating group 3 innate lymphoid cells (ILC3s) to produce IL-22. These observations illustrate that the intake of a crude diet secures epithelial barrier function by facilitating SFB colonization, whereas a purified diet insufficiently establishes the epithelial barrier, at least partly owing to the loss of SFB. Our data suggest that the influence of purified diets on the epithelial barrier integrity should be considered in experiments using purified diets.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Inmunidad Innata , Linfocitos , Dieta , Bacterias , Proliferación Celular
17.
Ann Neurol ; 95(2): 338-346, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37807081

RESUMEN

OBJECTIVE: Atrial fibrillation (AF) detected after insular stroke might arise from autonomic and inflammatory mechanisms triggered by insular damage, and be associated with a low embolic risk. We assessed the association of the timing of AF detection and insular involvement with the risk of embolic events after acute ischemic stroke. METHODS: Acute ischemic stroke patients with AF who underwent brain magnetic resonance imaging at baseline were enrolled. Patients were classified according to the timing of AF detection (AF detected after stroke [AFDAS] or known AF [KAF]) and insular involvement. The primary outcome was embolic events defined as recurrent ischemic stroke, transient ischemic attack, and systemic embolism within 90 days. RESULTS: Of 1,548 patients, 360 had AFDAS with insular cortex lesions (+I), 409 had AFDAS without insular cortex lesions (-I), 349 had KAF+I, and 430 had KAF-I. Cumulative incidence rates of embolic events at 90 days in patients with AFDAS+I, AFDAS-I, KAF+I, and KAF-I were 0.8%, 3.5%, 4.9%, and 3.3%, respectively. Patients with AFDAS-I (adjusted hazard ratio 5.04, 95% confidence interval 1.43-17.75), KAF+I (6.18, 1.78-21.46), and KAF-I (5.26, 1.48-18.69) had a significantly higher risk of embolic events than those with AFDAS+I. INTERPRETATION: Acute ischemic stroke patients with AFDAS and insular cortex lesions had a lower risk of embolic events than those who had AFDAS without insular cortex lesions or those with KAF, regardless of insular involvement. ANN NEUROL 2024;95:338-346.


Asunto(s)
Fibrilación Atrial , Isquemia Encefálica , Embolia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Isquemia Encefálica/complicaciones , Isquemia Encefálica/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/epidemiología , Embolia/complicaciones , Embolia/diagnóstico por imagen , Factores de Riesgo
18.
Sci Adv ; 9(50): eadj4407, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091391

RESUMEN

Myeloid/natural killer (NK) cell precursor acute leukemia (MNKPL) has been described on the basis of its unique immunophenotype and clinical phenotype. However, there is no consensus on the characteristics for identifying this disease type because of its rarity and lack of defined distinctive molecular characteristics. In this study, multiomics analysis revealed that MNKPL is distinct from acute myeloid leukemia, T cell acute lymphoblastic leukemia, and mixed-phenotype acute leukemia (MPAL), and NOTCH1 and RUNX3 activation and BCL11B down-regulation are hallmarks of MNKPL. Although NK cells have been classically considered to be lymphoid lineage-derived, the results of our single-cell analysis using MNKPL cells suggest that NK cells and myeloid cells share common progenitor cells. Treatment outcomes for MNKPL are unsatisfactory, even when hematopoietic cell transplantation is performed. Multiomics analysis and in vitro drug sensitivity assays revealed increased sensitivity to l-asparaginase and reduced levels of asparagine synthetase (ASNS), supporting the clinically observed effectiveness of l-asparaginase.


Asunto(s)
Asparaginasa , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/terapia , Enfermedad Aguda , Células Asesinas Naturales , Resultado del Tratamiento , Proteínas Represoras , Proteínas Supresoras de Tumor
19.
Haematologica ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38058200

RESUMEN

CASZ1 is a conserved transcription factor involved in neural development, blood vessel assembly and heart morphogenesis. CASZ1 has been implicated in cancer, either suppressing or promoting tumor development depending on the tissue. However, the impact of CASZ1 on hematological tumors remains unknown. Here, we show that the T-cell oncogenic transcription factor TAL1 is a direct positive regulator of CASZ1, that T-cell acute lymphoblastic leukemia (T-ALL) samples at diagnosis overexpress CASZ1b isoform, and that CASZ1b expression in patient samples correlates with PI3KAKT- mTOR signaling pathway activation. In agreement, overexpression of CASZ1b in both Ba/F3 and T-ALL cells leads to the activation of PI3K signaling pathway, which is required for CASZ1b-mediated transformation of Ba/F3 cells in vitro and malignant expansion in vivo. We further demonstrate that CASZ1b cooperates with activated NOTCH1 to promote T-ALL development in zebrafish, and that CASZ1b protects human T-ALL cells from serum deprivation and treatment with chemotherapeutic drugs. Taken together, our studies indicate that CASZ1b is a TAL1-regulated gene that promotes T-ALL development and resistance to chemotherapy.

20.
medRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37986997

RESUMEN

PURPOSE: Gamma delta T-cell receptor-positive acute lymphoblastic leukemia (γδ T-ALL) is a high-risk but poorly characterized disease. METHODS: We studied clinical features of 200 pediatric γδ T-ALL, and compared the prognosis of 93 cases to 1,067 protocol-matched non-γδ T-ALL. Genomic features were defined by transcriptome and genome sequencing. Experimental modeling was used to examine the mechanistic impacts of genomic alterations. Therapeutic vulnerabilities were identified by high throughput drug screening of cell lines and xenografts. RESULTS: γδ T-ALL in children under three was extremely high-risk with 5-year event-free survival (33% v. 70% [age 3-<10] and 73% [age ≥10], P =9.5 x 10 -5 ) and 5-year overall survival (49% v. 78% [age 3-<10] and 81% [age ≥10], P =0.002), differences not observed in non-γδ T-ALL. γδ T-ALL in this age group was enriched for genomic alterations activating LMO2 activation and inactivating STAG2 inactivation ( STAG2/LMO2 ). Mechanistically, we show that inactivation of STAG2 profoundly perturbs chromatin organization by altering enhancer-promoter looping resulting in deregulation of gene expression associated with T-cell differentiation. Drug screening showed resistance to prednisolone, consistent with clinical slow treatment response, but identified a vulnerability in DNA repair pathways arising from STAG2 inactivation, which was efficaciously targeted by Poly(ADP-ribose) polymerase (PARP) inhibition, with synergism with HDAC inhibitors. Ex-vivo drug screening on PDX cells validated the efficacy of PARP inhibitors as well as other potential targets including nelarabine. CONCLUSION: γδ T-ALL in children under the age of three is extremely high-risk and enriched for STAG2/LMO2 ALL. STAG2 loss perturbs chromatin conformation and differentiation, and STAG2/LMO2 ALL is sensitive to PARP inhibition. These data provide a diagnostic and therapeutic framework for pediatric γδ T-ALL. SUPPORT: The authors are supported by the American and Lebanese Syrian Associated Charities of St Jude Children's Research Hospital, NCI grants R35 CA197695, P50 CA021765 (C.G.M.), the Henry Schueler 41&9 Foundation (C.G.M.), and a St. Baldrick's Foundation Robert J. Arceci Innovation Award (C.G.M.), Gabriella Miller Kids First X01HD100702 (D.T.T and C.G.M.) and R03CA256550 (D.T.T. and C.G.M.), F32 5F32CA254140 (L.M.), and a Garwood Postdoctoral Fellowship of the Hematological Malignancies Program of the St Jude Children's Research Hospital Comprehensive Cancer Center (S.K.). This project was supported by the National Cancer Institute of the National Institutes of Health under the following award numbers: U10CA180820, UG1CA189859, U24CA114766, U10CA180899, U10CA180866 and U24CA196173. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding agencies were not directly involved in the design of the study, gathering, analysis and interpretation of the data, writing of the manuscript, or decision to submit the manuscript for publication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...