Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210257, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252218

RESUMEN

Embryonic development and growth in placental mammals proceeds in utero with the support of exchanges of gases, nutrients and waste products between maternal tissues and offspring. Murine embryos are surrounded by several extraembryonic membranes, parietal and visceral yolk sacs, and amnion in the uterus. Notably, the parietal yolk sac is the most outer membrane, consists of three layers, trophoblasts and parietal endoderm (PaE) cells, and is separated by a thick basal lamina termed Reichert's membrane (RM). RM is composed of extracellular matrix (ECM) initially formed as the basement membrane of the trophectoderm of pre-implanted embryos and followed by the heavy deposition of ECM mainly produced in PaE cells of post-implanted embryos. In addition to the physiological roles of RM, such as gas and nutrient exchange, it also plays a crucial role in cushioning and dispersing intrauterine pressures exerted on embryos for normal egg-cylinder morphogenesis. Mechanistically, such intrauterine pressures generated by uterine smooth muscle contractions appear to be involved in the elongation of the egg-cylinder shape, along with primary axis formation, as an important biomechanical element in utero. This review focuses on our current views of the roles of RM in properly buffering intrauterine mechanical forces for mouse egg-cylinder morphogenesis. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Asunto(s)
Placenta , Saco Vitelino , Animales , Membrana Basal , Endodermo , Femenino , Gases , Mamíferos , Ratones , Embarazo , Residuos
2.
Commun Biol ; 5(1): 378, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440748

RESUMEN

Previously, we have shown that the translocation of Grainyhead-like 3 (GRHL3) transcription factor from the nucleus to the cytoplasm triggers the switch from canonical Wnt signaling for epidermal differentiation to non-canonical Wnt signaling for epithelial morphogenesis. However, the molecular mechanism that underlies the cytoplasmic localization of GRHL3 protein and that activates non-canonical Wnt signaling is not known. Here, we show that ubiquitin-specific protease 39 (USP39), a deubiquitinating enzyme, is involved in the subcellular localization of GRHL3 as a potential GRHL3-interacting protein and is necessary for epithelial morphogenesis to up-regulate expression of planar cell polarity (PCP) components. Notably, mouse Usp39-deficient embryos display early embryonic lethality due to a failure in primitive streak formation and apico-basal polarity in epiblast cells, resembling those of mutant embryos of the Prickle1 gene, a crucial PCP component. Current findings provide unique insights into how differentiation and morphogenesis are coordinated to construct three-dimensional complex structures via USP39.


Asunto(s)
Polaridad Celular , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular , Polaridad Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM , Mamíferos , Ratones , Morfogénesis , Factores de Transcripción/metabolismo , Regulación hacia Arriba
3.
BMC Biol ; 20(1): 64, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264162

RESUMEN

BACKGROUND: During mammalian preimplantation development, as the fertilized egg develops and differentiates, three cell lineages become specified: trophectoderm (TE), epiblast, and primitive endoderm (PrE). Through two steps of cell fate decisions, 16-cell blastomeres develop into TE and an inner cell mass (ICM), and thereafter, the latter differentiates into pluripotent epiblast and PrE. Although bromodomain and extra-terminal domain (BET) proteins, such as BRD4, are necessary for the transcriptional activation of genes involved in the maintenance of mouse embryonic stem cells by occupying their enhancers, their roles in the development of mouse preimplantation are unknown. RESULTS: To evaluate the effect of BET protein deficiency on cell lineage formation, we cultured preimplantation embryos in the presence of JQ1, which blocks the binding of BET bromodomains to acetylated-histones. We found BET inhibition blocked the transcriptional activation of genes, such as Nanog, Otx2, and Sox2, important for the formation of the epiblast lineage in blastocysts. Expression studies with lineage-specific markers in morulae and blastocysts revealed BET proteins were essential for the specification and maintenance of the epiblast lineage but were dispensable for the formation of primarily extraembryonic TE and PrE lineages. Additional Ingenuity Pathway Analysis and expression studies with a transcriptionally active form of signal transducer and activator of the transcription 3 (STAT3) suggested BET-dependent activation was partly associated with the STAT3-dependent pathway to maintain the epiblast lineage. To identify BET proteins involved in the formation of the epiblast lineage, we analyzed mutant embryos deficient in Brd4, Brd2, and double mutants. Abolishment of NANOG-positive epiblast cells was only evident in Brd4/Brd2 double-deficient morulae. Thus, the phenotype of JQ1-treated embryos is reproduced not by a Brd4- or Brd2-single deficiency, but only Brd4/Brd2-double deficiency, demonstrating the redundant roles of BRD2 and BRD4 in the specification of the epiblast lineage. CONCLUSIONS: BET proteins are essential to the specification and maintenance of the epiblast lineage by activating lineage-specific core transcription factors during mouse preimplantation development. Among BET proteins, BRD4 plays a central role and BRD2 a complementary role in the specification and maintenance of epiblast lineages. Additionally, BET-dependent maintenance of the epiblast lineage may be partly associated with the STAT3-dependent pathway.


Asunto(s)
Blastocisto , Regulación del Desarrollo de la Expresión Génica , Animales , Linaje de la Célula , Estratos Germinativos/metabolismo , Mamíferos/genética , Ratones , Proteínas Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Methods Mol Biol ; 2303: 579-593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626408

RESUMEN

Cell surface-tethered heparan sulfate glycosaminoglycan chains primarily function in a cell autonomous manner, while extracellular matrix-associated heparan sulfate glycosaminoglycan chains function in a non-cell autonomous manner. In addition, the cleaved forms of cell surface-tethered heparan sulfate chains enzymatically released by proteases and heparanases, called shedding, can contribute to non-cell autonomous mechanisms. The movement of heparan sulfate chains to surrounding cells mediated by transcytosis or filopodia also involves another non-cell autonomous mechanism. To determine cell autonomous or non-cell autonomous roles of heparan sulfate glycosaminoglycan chains during early embryogenesis, direct conclusions can be drawn by analyzing chimeric embryos which are composed of wild-type and heparan sulfate glycosaminoglycan chain-deficient cells. Here, we describe methods of production of these chimeric embryos and analysis of their cellular phenotypes with immunohistochemistry at a single-cell level.


Asunto(s)
Glicosaminoglicanos/química , Animales , Membrana Celular , Embrión de Mamíferos , Proteoglicanos de Heparán Sulfato , Heparitina Sulfato , Ratones
5.
Cell Rep ; 31(7): 107637, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433954

RESUMEN

Mammalian embryogenesis proceeds in utero with the support of nutrients and gases from maternal tissues. However, the contribution of the mechanical environment provided by the uterus to embryogenesis remains unaddressed. Notably, how intrauterine pressures are produced, accurately adjusted, and exerted on embryos are completely unknown. Here, we find that Reichert's membrane, a specialized basement membrane that wraps around the implanted mouse embryo, plays a crucial role as a shock absorber to protect embryos from intrauterine pressures. Notably, intrauterine pressures are produced by uterine smooth muscle contractions, showing the highest and most frequent periodic peaks just after implantation. Mechanistically, such pressures are adjusted within the sealed space between the embryo and uterus created by Reichert's membrane and are involved in egg-cylinder morphogenesis as an important biomechanical environment in utero. Thus, we propose the buffer space sealed by Reichert's membrane cushions and disperses intrauterine pressures exerted on embryos for egg-cylinder morphogenesis.


Asunto(s)
Membrana Basal/metabolismo , Animales , Femenino , Ratones , Morfogénesis , Embarazo
6.
Cell Stem Cell ; 24(1): 79-92.e6, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30581080

RESUMEN

In many tissues, homeostasis is maintained by physical contact between stem cells and an anatomically defined niche. However, how stem cell homeostasis is achieved in environments where cells are motile and dispersed among their progeny remains unknown. Using murine spermatogenesis as a model, we find that spermatogenic stem cell density is tightly regulated by the supply of fibroblast growth factors (FGFs) from lymphatic endothelial cells. We propose that stem cell homeostasis is achieved through competition for a limited supply of FGFs. We show that the quantitative dependence of stem cell density on FGF dosage, the biased localization of stem cells toward FGF sources, and stem cell dynamics during regeneration following injury can all be predicted and explained within the framework of a minimal theoretical model based on "mitogen competition." We propose that this model provides a generic and robust mechanism to support stem cell homeostasis in open, or facultative, niche environments.


Asunto(s)
Factor 5 de Crecimiento de Fibroblastos/fisiología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Homeostasis , Mitógenos/farmacología , Espermatogénesis , Espermatozoides/citología , Células Madre/citología , Animales , Diferenciación Celular , Autorrenovación de las Células , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatozoides/fisiología , Células Madre/efectos de los fármacos , Células Madre/fisiología
7.
Nat Commun ; 9(1): 4959, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459462

RESUMEN

The original version of this Article contained an error in the labelling of Fig. 4. In panel i, the sixth column was incorrectly labelled as NSC23766 negative, and should have been NSC23766 positive. This has now been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 9(1): 4059, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283008

RESUMEN

Epithelial cell shape change is a pivotal driving force for morphogenesis of complex three-dimensional architecture. However, molecular mechanisms triggering shape changes of epithelial cells in the course of growth and differentiation have not been entirely elucidated. Grhl3 plays a crucial role as a downstream transcription factor of Wnt/ß-catenin in epidermal differentiation. Here, we show Grhl3 induced large, mature epidermal cells, enriched with actomyosin networks, from embryoid bodies in vitro. Such epidermal cells were apparently formed by the simultaneous activation of canonical and non-canonical Wnt signaling pathways. A nuclear transcription factor, GRHL3 is localized in the cytoplasm and cell membrane during epidermal differentiation. Subsequently, such extranuclear GRHL3 is essential for the membrane-associated expression of VANGL2 and CELSR1. Cytoplasmic GRHL3, thereby, allows epidermal cells to acquire mechanical properties for changes in epithelial cell shape. Thus, we propose that cytoplasmic localization of GRHL3 upon epidermal differentiation directly triggers epithelial morphogenesis.


Asunto(s)
Diferenciación Celular , Forma de la Célula , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Epidermis/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Morfogénesis , Factores de Transcripción/metabolismo , Alelos , Animales , Biomarcadores/metabolismo , Polaridad Celular , Citoesqueleto/metabolismo , Cuerpos Embrioides/metabolismo , Células Epidérmicas/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Mutación/genética , Células 3T3 NIH , Neurulación , Vía de Señalización Wnt
9.
PLoS Genet ; 12(10): e1006380, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27741242

RESUMEN

Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution.


Asunto(s)
Elementos Transponibles de ADN/genética , Elementos de Facilitación Genéticos/genética , Factor de Transcripción MSX1/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteína Wnt-5a/biosíntesis , Animales , Sitios de Unión , Proteínas de Unión al ADN/genética , Evolución Molecular , Regulación de la Expresión Génica , Humanos , Factor de Transcripción MSX1/metabolismo , Mamíferos , Ratones , Ratones Noqueados , Hueso Paladar/crecimiento & desarrollo , Transgenes , Proteína Wnt-5a/genética
10.
EBioMedicine ; 2(6): 513-27, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26288816

RESUMEN

During primary neurulation, the separation of a single-layered ectodermal sheet into the surface ectoderm (SE) and neural tube specifies SE and neural ectoderm (NE) cell fates. The mechanisms underlying fate specification in conjunction with neural tube closure are poorly understood. Here, by comparing expression profiles between SE and NE lineages, we observed that uncommitted progenitor cells, expressing stem cell markers, are present in the neural plate border/neural fold prior to neural tube closure. Our results also demonstrated that canonical Wnt and its antagonists, DKK1/KREMEN1, progressively specify these progenitors into SE or NE fates in accord with the progress of neural tube closure. Additionally, SE specification of the neural plate border via canonical Wnt signaling is directed by the grainyhead-like 3 (Grhl3) transcription factor. Thus, we propose that the fate specification of uncommitted progenitors in the neural plate border by canonical Wnt signaling and its downstream effector Grhl3 is crucial for neural tube closure. This study implicates that failure in critical genetic factors controlling fate specification of progenitor cells in the neural plate border/neural fold coordinated with neural tube closure may be potential causes of human neural tube defects.


Asunto(s)
Proteínas de Unión al ADN/genética , Cresta Neural/embriología , Placa Neural/embriología , Factores de Transcripción/genética , Vía de Señalización Wnt/fisiología , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular , Ectodermo/embriología , Técnicas de Cultivo de Embriones , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Células-Madre Neurales/citología , Neurulación/fisiología , Regiones Promotoras Genéticas/genética , Factor de Transcripción SOX9/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/genética
11.
Philos Trans R Soc Lond B Biol Sci ; 369(1657)2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25349453

RESUMEN

During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.


Asunto(s)
Desarrollo Embrionario/fisiología , Espacio Extracelular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal/fisiología , Animales , Transporte Biológico/fisiología , Proteoglicanos de Heparán Sulfato/biosíntesis , Proteoglicanos de Heparán Sulfato/química , Ratones , Modelos Biológicos
12.
Dev Cell ; 27(2): 131-144, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24176640

RESUMEN

Mouse anterior-posterior axis polarization is preceded by formation of the distal visceral endoderm (DVE) by unknown mechanisms. Here, we show by in vitro culturing of embryos immediately after implantation in microfabricated cavities that the external mechanical cues exerted on the embryo are crucial for DVE formation, as well as the elongated egg cylinder shape, without affecting embryo-intrinsic transcriptional programs except those involving DVE-specific genes. This implies that these developmental events immediately after implantation are not simply embryo-autonomous processes but require extrinsic factors from maternal tissues. Moreover, the mechanical forces induce a breach of the basement membrane barrier at the distal portion locally, and thereby the transmigrated epiblast cells emerge as the DVE cells. Thus, we propose that external mechanical forces exerted by the interaction between embryo and maternal uterine tissues directly control the location of DVE formation at the distal tip and consequently establish the mammalian primary body axis.


Asunto(s)
Membrana Basal/metabolismo , Tipificación del Cuerpo/genética , Implantación del Embrión , Embrión de Mamíferos/metabolismo , Animales , Movimiento Celular , Técnicas de Cultivo de Embriones , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Transducción de Señal/genética , Transcripción Genética
13.
Curr Opin Genet Dev ; 23(4): 399-407, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23465883

RESUMEN

Fibroblast Growth Factor (FGF) signaling plays crucial roles in multiple cellular processes including cell proliferation, differentiation, survival, and migration during mammalian embryogenesis. In the extracellular matrix, as well as at the cell surface, the movement of FGF ligands to target cells and the subsequent complex formations with their receptors are positively and negatively controlled extracellularly by heparan sulfate proteoglycans (HSPGs) such as syndecans, glypicans, and perlecan. Additionally, spreading of HSPGs by cleavage with sheddases such as proteinases and heparanases, and the overall length and sulfation level of specific heparan sulfate structures further generate a great diversity of FGF signaling outcomes. This review presents our current understanding of the regulatory mechanisms of FGF signaling in extracellular spaces through HSPGs in mammalian development.


Asunto(s)
Diferenciación Celular/genética , Factores de Crecimiento de Fibroblastos/genética , Mamíferos/crecimiento & desarrollo , Proteoglicanos/metabolismo , Animales , Proliferación Celular , Matriz Extracelular/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Humanos , Mamíferos/genética , Proteoglicanos/genética , Transducción de Señal/genética
14.
Biochem Biophys Res Commun ; 425(4): 762-8, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22885183

RESUMEN

To understand genetic programs controlling mammalian central nervous system (CNS) development, we have identified one transgene-inserted mutation, which showed embryonic lethality during neurulation. Determination of the transgene integration site and rescue experiments revealed that the Brd2 gene, whose products specifically bind acetylated histone H4 and can mediate transcription, was the cause of this mutation. Expression studies with specific markers demonstrated that cell cycle progression was accelerated and neuronal differentiation as well as cell cycle exit were impaired in Brd2-deficient neruoepithelial cells. To investigate whether Brd2 regulates neuronal differentiation through a E2F1 transcriptional factor, which directly binds Brd2 and controls genes expression for cell cycle progression and exit, we analyzed Brd2;E2F1 double mutant phenotypes and, consequently found that abnormalities in neuronal differentiation and cell cycle progression due to Brd2-deficiency were restored by removing the E2F1 gene. These findings suggest that Brd2 is required for cell cycle exit and neuronal differentiation of neuroepithelial cells through the E2F1 pathway during mouse CNS development.


Asunto(s)
Ciclo Celular/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Factor de Transcripción E2F1/metabolismo , Células Neuroepiteliales/citología , Neurogénesis/fisiología , Neuronas/citología , Proteínas Serina-Treonina Quinasas/fisiología , Alelos , Animales , Ciclo Celular/genética , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Proteínas Cromosómicas no Histona , Factor de Transcripción E2F1/genética , Ratones , Ratones Transgénicos , Neurogénesis/genética , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción
15.
Dev Cell ; 21(2): 257-72, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21839920

RESUMEN

Heparan sulfate (HS) proteoglycans modulate the activity of multiple growth factors on the cell surface and extracellular matrix. However, it remains unclear how the HS chains control the movement and reception of growth factors into targeted receiving cells during mammalian morphogenetic processes. Here, we found that HS-deficient Ext2 null mutant mouse embryos fail to respond to fibroblast growth factor (FGF) signaling. Marker expression analyses revealed that cell surface-tethered HS chains are crucial for local retention of FGF4 and FGF8 ligands in the extraembryonic ectoderm. Fine chimeric studies with single-cell resolution and expression studies with specific inhibitors for HS movement demonstrated that proteolytic cleavage of HS chains can spread FGF signaling to adjacent cells within a short distance. Together, the results show that spatiotemporal expression of cell surface-tethered HS chains regulate the local reception of FGF-signaling activity during mammalian embryogenesis.


Asunto(s)
Embrión de Mamíferos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Heparitina Sulfato/metabolismo , Transducción de Señal/fisiología , Animales , Disacáridos/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Noqueados , Modelos Biológicos , Mutación/genética , N-Acetilglucosaminiltransferasas/genética , Técnicas de Cultivo de Órganos , Unión Proteica , Transducción de Señal/genética
16.
Proc Natl Acad Sci U S A ; 105(11): 4220-5, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18334644

RESUMEN

Retroposons, such as short interspersed elements (SINEs) and long interspersed elements (LINEs), are the major constituents of higher vertebrate genomes. Although there are many examples of retroposons' acquiring function, none has been implicated in the morphological innovations specific to a certain taxonomic group. We previously characterized a SINE family, AmnSINE1, members of which constitute a part of conserved noncoding elements (CNEs) in mammalian genomes. We proposed that this family acquired genomic functionality or was exapted after retropositioning in a mammalian ancestor. Here we identified 53 new AmnSINE1 loci and refined 124 total loci, two of which were further analyzed. Using a mouse enhancer assay, we demonstrate that one SINE locus, AS071, 178 kbp from the gene FGF8 (fibroblast growth factor 8), is an enhancer that recapitulates FGF8 expression in two regions of the developing forebrain, namely the diencephalon and the hypothalamus. Our gain-of-function analysis revealed that FGF8 expression in the diencephalon controls patterning of thalamic nuclei, which act as a relay center of the neocortex, suggesting a role for FGF8 in mammalian-specific forebrain patterning. Furthermore, we demonstrated that the locus, AS021, 392 kbp from the gene SATB2, controls gene expression in the lateral telencephalon, which is thought to be a signaling center during development. These results suggest important roles for SINEs in the development of the mammalian neuronal network, a part of which was initiated with the exaptation of AmnSINE1 in a common mammalian ancestor.


Asunto(s)
Encéfalo/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Elementos de Nucleótido Esparcido Corto , Animales , Encéfalo/embriología , Embrión de Pollo , Cromosomas Humanos/genética , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Mamíferos/embriología , Ratones , Ratones Transgénicos , Filogenia
17.
Proc Natl Acad Sci U S A ; 104(14): 5919-24, 2007 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-17389379

RESUMEN

Anterior visceral endoderm (AVE) plays essential roles with respect to anterior-posterior axis development in the early mouse embryo. To assess the genetic cascade involved in AVE formation, the cis-regulatory elements directing expression of vertebrate Otx2 genes in the AVE were analyzed via generation of transgenic mice. Otx2 expression in AVE is regulated directly by the forkhead transcription factor, Foxa2. Moreover, Foxa2 is essential for expression of the Wnt antagonists, Dkk1 and Cerl, in visceral endoderm during the pre- to early streak stages; however, Foxa2 appears to be dispensable for subsequent Dkk1 expression associated with forebrain induction. Thus, we propose that Foxa2 is crucial in early anterior-posterior axis polarization in terms of regulation of expression of AVE-specific genes. These findings provide profound insights into conserved roles of Foxa2 transcription factors in anterior specification throughout the evolution of the chordate body plan.


Asunto(s)
Tipificación del Cuerpo , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Vísceras/embriología , Animales , Endodermo/citología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Vísceras/citología , beta-Galactosidasa/metabolismo
18.
Dev Cell ; 9(5): 639-50, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16256739

RESUMEN

The mouse embryonic axis is initially formed with a proximal-distal orientation followed by subsequent conversion to a prospective anterior-posterior (A-P) polarity with directional migration of visceral endoderm cells. Importantly, Otx2, a homeobox gene, is essential to this developmental process. However, the genetic regulatory mechanism governing axis conversion is poorly understood. Here, defective axis conversion due to Otx2 deficiency can be rescued by expression of Dkk1, a Wnt antagonist, or following removal of one copy of the beta-catenin gene. Misexpression of a canonical Wnt ligand can also inhibit correct A-P axis rotation. Moreover, asymmetrical distribution of beta-catenin localization is impaired in the Otx2-deficient and Wnt-misexpressing visceral endoderm. Concurrently, canonical Wnt and Dkk1 function as repulsive and attractive guidance cues, respectively, in the migration of visceral endoderm cells. We propose that Wnt/beta-catenin signaling mediates A-P axis polarization by guiding cell migration toward the prospective anterior in the pregastrula mouse embryo.


Asunto(s)
Tipificación del Cuerpo/fisiología , Endodermo/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Factores de Transcripción Otx/genética , Transducción de Señal/fisiología , Proteínas Wnt/fisiología , Animales , Tipificación del Cuerpo/genética , Movimiento Celular/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Endodermo/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Transducción de Señal/efectos de los fármacos , Vísceras/citología , Vísceras/embriología , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/fisiología
20.
Development ; 131(14): 3307-17, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15201223

RESUMEN

We have identified cis-regulatory sequences acting on Otx2 expression in epiblast (EP) and anterior neuroectoderm (AN) at about 90 kb 5' upstream. The activity of the EP enhancer is found in the inner cell mass at E3.5 and the entire epiblast at E5.5. The AN enhancer activity is detected initially at E7.0 and ceases by E8.5; it is found later in the dorsomedial aspect of the telencephalon at E10.5. The EP enhancer includes multiple required domains over 2.3 kb, and the AN enhancer is an essential component of the EP enhancer. Mutants lacking the AN enhancer have demonstrated that these cis-sequences indeed regulate Otx2 expression in EP and AN. At the same time, our analysis indicates that another EP and AN enhancer must exist outside of the -170 kb to +120 kb range. In Otx2DeltaAN/- mutants, in which one Otx2 allele lacks the AN enhancer and the other allele is null, anteroposterior axis forms normally and anterior neuroectoderm is normally induced. Subsequently, however, forebrain and midbrain are lost, indicating that Otx2 expression under the AN enhancer functions to maintain anterior neuroectoderm once induced. Furthermore, Otx2 under the AN enhancer cooperates with Emx2 in diencephalon development. The AN enhancer region is conserved among mouse, human and Xenopus; moreover, the counterpart region in Xenopus exhibited an enhancer activity in mouse anterior neuroectoderm.


Asunto(s)
Encéfalo/embriología , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Mesencéfalo/embriología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Prosencéfalo/embriología , Transactivadores/biosíntesis , Transactivadores/genética , Alelos , Animales , Secuencia de Bases , Tipificación del Cuerpo , Cromosomas Artificiales Bacterianos , Elementos de Facilitación Genéticos , Eliminación de Gen , Genotipo , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Genéticos , Datos de Secuencia Molecular , Mutagénesis , Mutación , Factores de Transcripción Otx , Fenotipo , Reacción en Cadena de la Polimerasa , ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Factores de Tiempo , Factores de Transcripción , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...