Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JAMA ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39401011

RESUMEN

This cross-sectional study assesses the extent to which hospitals provide information related to sexual and gender minority policies and health services on their websites.

2.
Sci Rep ; 14(1): 1899, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253650

RESUMEN

The hormone GDF15 is secreted in response to cellular stressors. Metformin elevates circulating levels of GDF15, an action important for the drug's beneficial effects on body weight. Metformin can also inhibit mammalian respiratory complex I, leading to decreases in ATP:AMP ratio, activation of AMP Kinase (AMPK), and increased GDF15 production. We undertook studies using a range of mice with tissue-specific loss of Gdf15 (namely gut, liver and global deletion) to determine the relative contributions of two classical metformin target tissues, the gut and liver, to the elevation of GDF15 seen with metformin. In addition, we performed comparative studies with another pharmacological agent, the AMP kinase pan-activator, MK-8722. Deletion of Gdf15 from the intestinal epithelium significantly reduced the circulating GDF15 response to oral metformin, whereas deletion of Gdf15 from the liver had no effect. In contrast, deletion of Gdf15 from the liver, but not the gut, markedly reduced circulating GDF15 responses to MK-8722. Further, our data show that, while GDF15 restricts high-fat diet-induced weight gain, the intestinal production of GDF15 is not necessary for this effect. These findings add to the body of evidence implicating the intestinal epithelium in key aspects of the pharmacology of metformin action.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Metformina , Animales , Ratones , Adenilato Quinasa/metabolismo , Transporte Biológico , Mucosa Intestinal , Hígado , Mamíferos , Metformina/farmacología , Factor 15 de Diferenciación de Crecimiento/metabolismo
3.
J Clin Endocrinol Metab ; 108(12): e1580-e1587, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37339320

RESUMEN

CONTEXT: The melanocortin 3 receptor (MC3R) has recently emerged as a critical regulator of pubertal timing, linear growth, and the acquisition of lean mass in humans and mice. In population-based studies, heterozygous carriers of deleterious variants in MC3R report a later onset of puberty than noncarriers. However, the frequency of such variants in patients who present with clinical disorders of pubertal development is currently unknown. OBJECTIVE: This work aimed to determine whether deleterious MC3R variants are more frequently found in patients clinically presenting with constitutional delay of growth and puberty (CDGP) or normosmic idiopathic hypogonadotropic hypogonadism (nIHH). METHODS: We examined the sequence of MC3R in 362 adolescents with a clinical diagnosis of CDGP and 657 patients with nIHH, experimentally characterized the signaling properties of all nonsynonymous variants found and compared their frequency to that in 5774 controls from a population-based cohort. Additionally, we established the relative frequency of predicted deleterious variants in individuals with self-reported delayed vs normally timed menarche/voice-breaking in the UK Biobank cohort. RESULTS: MC3R loss-of-function variants were infrequent but overrepresented in patients with CDGP (8/362 [2.2%]; OR = 4.17; P = .001). There was no strong evidence of overrepresentation in patients with nIHH (4/657 [0.6%]; OR = 1.15; P = .779). In 246 328 women from the UK Biobank, predicted deleterious variants were more frequently found in those self-reporting delayed (aged ≥16 years) vs normal age at menarche (OR = 1.66; P = 3.90E-07). CONCLUSION: We have found evidence that functionally damaging variants in MC3R are overrepresented in individuals with CDGP but are not a common cause of this phenotype.


Asunto(s)
Hipogonadismo , Pubertad Tardía , Adolescente , Humanos , Femenino , Animales , Ratones , Receptor de Melanocortina Tipo 3 , Prevalencia , Hipogonadismo/epidemiología , Hipogonadismo/genética , Hipogonadismo/complicaciones , Pubertad Tardía/epidemiología , Pubertad Tardía/genética , Pubertad Tardía/diagnóstico , Pubertad/genética , Trastornos del Crecimiento/genética
6.
Obesity (Silver Spring) ; 30(7): 1420-1429, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35610936

RESUMEN

OBJECTIVE: Obesity has emerged as a prominent risk factor for multiple serious disease states, including a variety of cancers, and is increasingly recognized as a primary contributor to preventable cancer risk. However, few studies of leukemia have been conducted in animal models of obesity. This study sought to characterize the impact of obesity, diet, and sex in a murine model of acute promyelocytic leukemia (APL). METHODS: Male and female C57BL/6J.mCG+/PR mice, genetically predisposed to sporadic APL development, and C57BL/6J (wild type) mice were placed on either a high-fat diet (HFD) or a low-fat diet (LFD) for up to 500 days. RESULTS: Relative to LFD-fed mice, HFD-fed animals displayed increased disease penetrance and shortened disease latency as indicated by accelerated disease onset. In addition, a diet-responsive sex difference in APL penetrance and incidence was identified, with LFD-fed male animals displaying increased penetrance and shortened latency relative to female counterparts. In contrast, both HFD-fed male and female mice displayed 100% disease penetrance and insignificant differences in disease latency, indicating that the sexual dimorphism was reduced through HFD feeding. CONCLUSIONS: Obesity and obesogenic diet promote the development of APL in vivo, reducing sexual dimorphisms in disease latency and penetrance.


Asunto(s)
Leucemia Promielocítica Aguda , Caracteres Sexuales , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Leucemia Promielocítica Aguda/complicaciones , Leucemia Promielocítica Aguda/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Penetrancia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...