Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(28): 36380-36391, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38968444

RESUMEN

A metal-insulator-semiconductor (MIS) structure holds great potential to promote photoelectrochemical (PEC) reactions, such as water splitting and CO2 reduction, for the storage of solar energy in chemical bonds. The semiconductor absorbs photons, creating electron-hole pairs; the insulator facilitates charge separation; and the metal collects the desired charge and facilitates its use in the electrochemical reaction. Despite these attractive features, MIS photoelectrodes are significantly limited by their photovoltage, a combination of the voltage generated from photon absorption minus the potential drop across the insulator. Herein, we use multiscale continuum modeling of the carrier, electrolyte, and interfacial transport to identify strategies for mitigating the deleterious potential drop across the insulator and enabling high MIS photovoltages. To this end, we model Ni/SiO2/n-Si photoanodes that employ a planar Ni film or Ni nanoparticles (np-MIS) and validate both models using experimental polarization curves and photovoltage measurements from the literature. The simulations reveal that the insulator potential drop is lower and hence achieves higher photovoltages for np-MIS structures than MIS structures because the electrolyte screens charge trapped at defect states between the semiconductor and the insulator. This electrolyte charge screening phenomenon can be further leveraged by using low loadings or small nanoparticles, which not only minimize the interfacial potential drop but also improve the photocurrent by enabling more light absorption. These insights contribute to the optimization of the np-MIS structures for sustainable energy conversion.

2.
ACS Appl Energy Mater ; 7(8): 3091-3098, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665895

RESUMEN

Electrochemical CO2 reduction (CO2R) using heterogenized molecular catalysts usually yields 2-electron reduction products (CO, formate). Recently, it has been reported that certain preparations of immobilized cobalt phthalocyanine (CoPc) produce methanol (MeOH), a 6-electron reduction product. Here, we demonstrate the significant role of intermediate mass transport in CoPc selectivity to methanol. We first developed a simple, physically mixed, polymer (and polyfluoroalkyl, PFAS)-free preparation of CoPc on multiwalled carbon nanotubes (MWCNTs) which can be integrated onto Au electrodes using a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) adhesion layer. After optimization of catalyst preparation and loading, methanol Faradaic efficiencies and partial current densities of 36% (±3%) and 3.8 (±0.5) mA cm-2, respectively, are achieved in the CO2-saturated aqueous electrolyte. The electrolyte flow rate has a large effect. A linear flow velocity of 8.5 cm/min produces the highest MeOH selectivity, with higher flow rates increasing CO selectivity and lower flow rates increasing the hydrogen evolution reaction, suggesting that CO is an unbound intermediate. Using a continuum multiphysics model assuming CO is the intermediate, we show qualitative agreement with the optimal inlet flow rate. Polymer binders were not required to achieve a high Faradaic efficiency for methanol using CoPc and MWCNTs. We also investigated the role of formaldehyde as an intermediate and the role of strain, but definitive conclusions could not be established.

3.
ACS Appl Mater Interfaces ; 15(19): 23024-23039, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37154402

RESUMEN

A metal-insulator-semiconductor (MIS) structure is an attractive photoelectrode-catalyst architecture for promoting photoelectrochemical reactions, such as the formation of H2 by proton reduction. The metal catalyzes the generation of H2 using electrons generated by photon absorption and charge separation in the semiconductor. The insulator layer between the metal and the semiconductor protects the latter element from photo-corrosion and, also, significantly impacts the photovoltage at the metal surface. Understanding how the insulator layer determines the photovoltage and what properties lead to high photovoltages is critical to the development of MIS structures for solar-to-chemical energy conversion. Herein, we present a continuum model for charge-carrier transport from the semiconductor to the metal with an emphasis on mechanisms of charge transport across the insulator. The polarization curves and photovoltages predicted by this model for a Pt/HfO2/p-Si MIS structure at different HfO2 thicknesses agree well with experimentally measured data. The simulations reveal how insulator properties (i.e., thickness and band structure) affect band bending near the semiconductor/insulator interface and how tuning them can lead to operation closer to the maximally attainable photovoltage, the flat-band potential. This phenomenon is understood by considering the change in tunneling resistance with insulator properties. The model shows that the best MIS performance is attained with highly symmetric semiconductor/insulator band offsets (e.g., BeO, MgO, SiO2, HfO2, or ZrO2 deposited on Si) and a low to moderate insulator thickness (e.g., between 0.8 and 1.5 nm). Beyond 1.5 nm, the density of filled interfacial trap sites is high and significantly limits the photovoltage and the solar-to-chemical conversion rate. These conclusions are true for photocathodes and photoanodes. This understanding provides critical insight into the phenomena enhancing and limiting photoelectrode performance and how this phenomenon is influenced by insulator properties. The study gives guidance toward the development of next-generation insulators for MIS structures that achieve high performance.

4.
Acc Chem Res ; 55(4): 484-494, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35104114

RESUMEN

The electrochemical reduction of carbon dioxide (CO2R) driven by renewably generated electricity (e.g., solar and wind) offers a promising means for reusing the CO2 released during the production of cement, steel, and aluminum as well as the production of ammonia and methanol. If CO2 could be removed from the atmosphere at acceptable costs (i.e., <$100/t of CO2), then CO2R could be used to produce carbon-containing chemicals and fuels in a fully sustainable manner. Economic considerations dictate that CO2R current densities must be in the range of 0.1 to 1 A/cm2 and selectivity toward the targeted product must be high in order to minimize separation costs. Industrially relevant operating conditions can be achieved by using gas diffusion electrodes (GDEs) to maximize the transport of species to and from the cathode and combining such electrodes with a solid-electrolyte membrane by eliminating the ohmic losses associated with liquid electrolytes. Additionally, high product selectivity can be attained by careful tuning of the microenvironment near the catalyst surface (e.g., the pH, the concentrations of CO2 and H2O, and the identities of the cations in the double layer adjacent to the catalyst surface).We begin this Account with a discussion of our experimental and theoretical work aimed at optimizing catalyst microenvironments for CO2R. We first examine the effects of catalyst morphology on the production of multicarbon (C2+) products over Cu-based catalysts and then explore the role of mass transfer combined with the kinetics of buffer reactions in the local concentration of CO2 and pH at the catalyst surface. This is followed by a discussion of the dependence of the local CO2 concentration and pH on the dynamics of CO2R and the formation of specific products over both Cu and Ag catalysts. Next, we explore the impact of electrolyte cation identity on the rate of CO2R and the distribution of products. Subsequently, we look at utilizing pulsed electrolysis to tune the local pH and CO2 concentration at the catalyst surface. The last part of the discussion demonstrates that ionomer-coated catalysts in combination with pulsed electrolysis can enable the attainment of very high (>90%) selectivity to C2+ products over Cu in an aqueous electrolyte. This part of the Account is then extended to consider the difference in the catalyst-nanoparticle microenvironment, present in the catalyst layer of a membrane electrode assembly (MEA), with respect to that of a planar electrode immersed in an aqueous electrolyte.


Asunto(s)
Dióxido de Carbono , Técnicas Electroquímicas , Catálisis , Técnicas Electroquímicas/métodos , Electrodos , Electrólitos
5.
J Phys Chem B ; 125(1): 360-371, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33370123

RESUMEN

Several pyrene-boron-dipyrromethene (BODIPY) and pyrene-BODIPY-ferrocene derivatives with a fully conjugated pyrene fragment appended to the α-position(s) of the BODIPY core have been prepared by Knoevenagel condensation reaction and characterized by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR), UV-vis, fluorescence spectroscopy, high-resolution mass spectrometry as well as X-ray crystallography. The redox properties of new donor-acceptor BODIPY dyads and triads were studied by electrochemical (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)) and spectroelectrochemical approaches. Formation of weakly bonded noncovalent complexes between the new pyrene-BODIPYs and nanocarbon materials (C60, C70, single-walled carbon nanotube (SWCNT), and graphene) was studied by UV-vis, steady-state fluorescent, and time-resolved transient absorption spectroscopy. UV-vis and fluorescent spectroscopy are indicative of the much stronger and selective interaction between new dyes and (6,5)-SWCNT as well as graphene compared to that of C60 and C70 fullerenes. In agreement with these data, transient absorption spectroscopy provided no evidence for any significant change in excited-state lifetime or photoinduced charge transfer between pyrene-BODIPYs and C60 or C70 fullerenes when the pyrene-BODIPY chromophores were excited into the lowest-energy singlet excited state. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations suggest that the pyrene fragments are fully conjugated into the π-system of BODIPY core, which correlates well with the experimental data.

6.
J Phys Chem Lett ; 10(8): 1828-1832, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30924653

RESUMEN

The excited-state dynamics and energetics of a series of BODIPY-derived chromophores bound to a catechol at the boron position were investigated with a combination of static and time-resolved spectroscopy, electrochemistry, and density functional theory calculations. Compared with the difluoro-BODIPY-derived parent compounds, the addition of the catechol at the boron reduced the excited-state lifetime by three orders of magnitude. Deactivation of the excited state proceeded through an intermediate charge-transfer state accessed from the initial optically excited π* state in <1 ps. Despite differences in the structures of the BODIPY derivatives and absorption maxima that spanned the visible portion of the spectrum, all compounds exhibited the same, rapid, excited-state deactivation mechanism, suggesting the generality of the observed dynamics within this class of compounds.

7.
Chemistry ; 23(59): 14786-14796, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-28724190

RESUMEN

Several BOPHY derivatives with and without ferrocene fragments, and with electron-withdrawing ester groups appended to the ß-pyrrolic positions have been prepared and characterized by NMR, UV/Vis near-infrared (NIR), high-resolution mass spectrometry, and fluorescence spectroscopy, as well as X-ray crystallography. The redox properties of new BOPHYs were probed by electrochemical (cyclic and differential pulse voltammetry) and spectroelectrochemical methods. In an attempt to prepare BOPHY derivatives with a cyano group at the bridging position using a similar approach for BODIPY cyanation, adducts from the nucleophilic attack of the cyanide anion on the bridging position in BOPHY have been isolated and characterized by spectroscopic methods. Oxidation of such adducts, however, resulted in formation of either the starting BOPHYs, or partial extrusion of the BF2 fragment from the BOPHY core, which was confirmed by spectroscopy and X-ray crystallography. DFT and TDDFT calculations on all target materials correlate well with the experimental data, and suggest the dramatic reduction of the nitrogen atom basicity at the hydrazine bridge of the BOPHY upon introduction of the cyano group at the bridging-carbon atom.

8.
BJU Int ; 103(4): 454-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18782304

RESUMEN

OBJECTIVE: To assess the incidence and outcome of incidental prostate cancer detected at transurethral resection of the prostate (TURP), and to evaluate whether laser ablation prostatectomy would miss significant cancer by failing to provide tissue for histopathological analysis. PATIENTS AND METHODS: Information on TURP-detected prostate cancer was gathered from 1996 to 2006, from The South-west Cancer Intelligence Service, hospital-operating and coding records, histopathology databases and The British Association of Urological Surgeons Cancer Registry. We recorded the total number of prostate cancers diagnosed per year, number of TURPs performed, Gleason scores and patients outcomes. RESULTS: TURP-detected prostate cancer has declined since the relatively high rates (22%) recorded locally in 1996-97. Between 2001 and 2006, a mean (range) of 124 (111-135) prostate cancers were detected per year. Incidental cancers accounted for only 1.5-5.6% of all newly diagnosed prostate cancers per year. Incidental cancers had a mean (sem) Gleason score of 5.7 (0.3) compared to 8.0 (0.3) in known cancers (P < 0.01) undergoing TURP. Of newly diagnosed patients, 82% were allocated to active surveillance, whilst 18% were started on hormone therapy, with no prostate cancer-related deaths over a mean (sem, range) follow-up of 49.7 (2.4, 11-81) months. CONCLUSIONS: TURP mainly samples transitional-zone tissue where tumours are relatively uncommon, and have a good prognosis. Our series of incidental TURP-detected cancers showed an incidence in keeping with published data, and favourable histological and clinical outcomes. We suggest the lack of tissue should not discourage the use of laser prostatectomy surgery.


Asunto(s)
Terapia por Láser/normas , Prostatectomía/normas , Hiperplasia Prostática/cirugía , Neoplasias de la Próstata/diagnóstico , Resección Transuretral de la Próstata/métodos , Anciano , Anciano de 80 o más Años , Humanos , Hallazgos Incidentales , Terapia por Láser/efectos adversos , Terapia por Láser/métodos , Masculino , Auditoría Médica , Persona de Mediana Edad , Pronóstico , Prostatectomía/efectos adversos , Prostatectomía/métodos , Hiperplasia Prostática/patología , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...