Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Organometallics ; 40(16): 2844-2851, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34483434

RESUMEN

We report a variety of rhenium complexes supported by bidentate and tridentate phosphinoamine ligands and their use in the formation of the advanced biofuel isobutanol from methanol and ethanol. Rhenium pincer complexes 1-3 are effective catalysts for this process, with 2 giving isobutanol in 35% yields, with 97% selectivity in the liquid fraction, over 16 h with catalyst loadings as low as 0.07 mol %. However, these catalysts show poorer overall selectivity, with the formation of a significant amount of carboxylate salt solid byproduct also being observed. Production of the active catalyst 1d has been followed by 31P NMR spectroscopy, and the importance of the presence of base and elevated temperatures to catalyst activation has been established. Complexes supported by diphosphine ligands are inactive for Guerbet chemistry; however, complexes supported by bidentate phosphinoamine ligands show greater selectivity for isobutanol formation over carboxylate salts. The novel complex 7 was able to produce isobutanol in 28% yield over 17 h. The importance of the N-H moiety to the catalytic performance has also been established, giving further weight to the hypothesis that these catalysts operate via a cooperative mechanism.

2.
Organometallics ; 39(21): 3873-3878, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33583993

RESUMEN

We report a variety of manganese-based catalysts containing both chelating diphosphine (bis(diphenylphosphino)methane (dppm: 1, 2, and 7) or 1,2-bis(diphenylphosphino)ethane (dppe: 3)), and mixed-donor phosphinoamine (2-(diphenylphosphino)ethylamine (dppea: 4-6)) ligands for the upgrading of ethanol and methanol to the advanced biofuel isobutanol. These catalysts show moderate selectivity up to 74% along with turnover numbers greater than 100 over 90 h, with catalyst 2 supported by dppm demonstrating superior performance. The positive effect of substituting the ligand backbone was also displayed with a catalyst supported by C-phenyl-substituted dppm (8) having markedly improved performance compared to the parent dppm catalysts. Catalysts supported by the phosphinoamine ligand dppea are also active for the upgrading of ethanol to n-butanol. These results show that so-called PNP-pincer ligands are not a prerequisite for the use of manganese catalysts in Guerbet chemistry and that simple chelates can be used effectively.

3.
Inorg Chem ; 58(9): 6399-6409, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31016964

RESUMEN

A series of intermolecular transition metal frustrated Lewis pairs (FLPs) based on zirconocene alkoxide complexes ([Cp2Zr(OMes)]+ 1 or ([Cp*2Zr(OMes)]+ 2) with nitrogen Lewis bases (NEt3, NEtiPr2, pyridine, 2-methylpyridine, 2,6-lutidine) are reported. The interaction between Zr and N depends on the specific derivatives used, in general more sterically encumbered pairs leading to a more frustrated interaction; however, DOSY NMR spectroscopy reveals these interactions to be dynamic in nature. The pairs undergo typical FLP-type reactivity with D2, CO2, THF, and PhCCD. The catalytic dehydrocoupling of Me2NH·BH3 is also reported. Comparisons can be made with previous work employing phosphines as Lewis bases suggesting that hard-hard or hard-soft acid-base considerations are of little importance compared to the more prominent roles of steric bulk and basicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...