Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Health SA ; 29: 2490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445034

RESUMEN

Background: Knowledge of fasting or Nil Per Os (NPO) guidelines is an essential component of nursing care in the preoperative period. Aim: To describe registered nurses' (RNs) knowledge and management of the preoperative NPO period. Setting: Selected surgical wards in a tertiary hospital in the Western Cape, South Africa. Methods: Quantitative descriptive, cross-sectional study utilising a structured questionnaire. The population consisted of RNs working in selected surgical wards. Convenience sampling was used and adequate knowledge was determined as ≥ 90%. Results: The response rate was 100%. Of the 68 participants, 48 (70.6%) held a diploma and 20 (29.4%) held a degree as the highest academic qualification achieved. Sixty-one (89.7%) participants knew the correct reason for keeping patients NPO. Sixty-five (95.6%) knew the correct answer for the NPO time for solids while only 27 (39.7%) knew the correct answer for clear fluids. Only 30 (44.1%), 26 (38.2%) and 33 (48.5%) participants, respectively, answered the questions about oral analgesia, oral antibiotics and chronic medication administration during the NPO period correctly. Significantly more degree participants knew the correct answer for the fasting time for non-human milk (p = 0.005) and more diploma participants would administer chronic medication during the NPO period (p = 0.037). Conclusion: Inadequate knowledge of NPO times for various fluids and unsatisfactory practice of medication administration for oral and chronic medication require attention. Contribution: This study highlights the importance that ongoing education is needed to ensure that patients receive the most up-to-date evidence-based care during the NPO period.

3.
PLoS One ; 18(7): e0289098, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37490473

RESUMEN

Chronic smoking is a primary risk factor for breast cancer due to the presence of various toxins and carcinogens within tobacco products. Nicotine is the primary addictive component of tobacco products and has been shown to promote breast cancer cell proliferation and metastases. Nicotine activates nicotinic acetylcholine receptors (nAChRs) that are expressed in cancer cell lines. Here, we examine the role of the α7 nAChR in coupling to heterotrimeric G proteins within breast cancer MCF-7 cells. Pharmacological activation of the α7 nAChR using choline or nicotine was found to increase proliferation, motility, and calcium signaling in MCF-7 cells. This effect of α7 nAChR on cell proliferation was abolished by application of Gαi/o and Gαq protein blockers. Specifically, application of the Gαi/o inhibitor pertussis toxin was found to abolish choline-mediated cell proliferation and intracellular calcium transient response. These findings were corroborated by expression of a G protein binding dominant negative nAChR subunit (α7345-348A), which resulted in significantly attenuating calcium signaling and cellular proliferation in response to choline. Our study shows a new role for G protein signaling in the mechanism of α7 nAChR-associated breast cancer growth.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al GTP Heterotriméricas , Receptores Nicotínicos , Humanos , Femenino , Nicotina/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Señalización del Calcio , Receptores Nicotínicos/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proliferación Celular , Colina/farmacología , Calcio/metabolismo
4.
Bone ; 169: 116681, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708855

RESUMEN

Despite the remarkable regenerative capacity of skeletal tissues, nonunion of bone and failure of fractures to heal properly presents a significant clinical concern. Stem and progenitor cells are present in bone and become activated following injury; thus, elucidating mechanisms that promote adult stem cell-mediated healing is important. Wnt-associated adult stem marker Lgr6 is implicated in the regeneration of tissues with well-defined stem cell niches in stem cell-reliant organs. Here, we demonstrate that Lgr6 is dynamically expressed in osteoprogenitors in response to fracture injury. We used an Lgr6-null mouse model and found that Lgr6 expression is necessary for maintaining bone volume and efficient postnatal bone regeneration in adult mice. Skeletal progenitors isolated from Lgr6-null mice have reduced colony-forming potential and reduced osteogenic differentiation capacity due to attenuated cWnt signaling. Lgr6-null mice consist of a lower proportion of self-renewing stem cells. In response to fracture injury, Lgr6-null mice have a deficiency in the proliferation of periosteal progenitors and reduced ALP activity. Further, analysis of the bone regeneration phase and remodeling phase of fracture healing in Lgr6-null mice showed impaired endochondral ossification and decreased mineralization. We propose that in contrast to not being required for successful skeletal development, Lgr6-positive cells have a direct role in endochondral bone repair.


Asunto(s)
Células Madre Adultas , Fracturas Óseas , Animales , Ratones , Células Madre Adultas/metabolismo , Huesos/metabolismo , Regeneración Ósea , Diferenciación Celular , Curación de Fractura , Osteogénesis , Periostio , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/metabolismo
5.
Blood Adv ; 7(2): 236-245, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36251745

RESUMEN

Patients with multiple myeloma (MM) who are treated with lenalidomide rarely develop a secondary B-cell acute lymphoblastic leukemia (B-ALL). The clonal and biological relationship between these sequential malignancies is not yet clear. We identified 17 patients with MM treated with lenalidomide, who subsequently developed B-ALL. Patient samples were evaluated through sequencing, cytogenetics/fluorescence in situ hybridization (FISH), immunohistochemical (IHC) staining, and immunoglobulin heavy chain (IgH) clonality assessment. Samples were assessed for shared mutations and recurrently mutated genes. Through whole exome sequencing and cytogenetics/FISH analysis of 7 paired samples (MM vs matched B-ALL), no mutational overlap between samples was observed. Unique dominant IgH clonotypes between the tumors were observed in 5 paired MM/B-ALL samples. Across all 17 B-ALL samples, 14 (83%) had a TP53 variant detected. Three MM samples with sufficient sequencing depth (>500×) revealed rare cells (average of 0.6% variant allele frequency, or 1.2% of cells) with the same TP53 variant identified in the subsequent B-ALL sample. A lack of mutational overlap between MM and B-ALL samples shows that B-ALL developed as a second malignancy arising from a founding population of cells that likely represented unrelated clonal hematopoiesis caused by a TP53 mutation. The recurrent variants in TP53 in the B-ALL samples suggest a common path for malignant transformation that may be similar to that of TP53-mutant, treatment-related acute myeloid leukemia. The presence of rare cells containing TP53 variants in bone marrow at the initiation of lenalidomide treatment suggests that cellular populations containing TP53 variants expand in the presence of lenalidomide to increase the likelihood of B-ALL development.


Asunto(s)
Linfoma de Burkitt , Lenalidomida , Mieloma Múltiple , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Médula Ósea/patología , Linfoma de Burkitt/patología , Cadenas Pesadas de Inmunoglobulina/genética , Hibridación Fluorescente in Situ , Lenalidomida/efectos adversos , Lenalidomida/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mutación , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
8.
Biochem J ; 479(1): 39-55, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34870314

RESUMEN

Activation-induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases. AID mutates immunoglobulin loci to initiate secondary antibody diversification. The APOBEC3 (A3) sub-branch mutates viral pathogens in the cytosol and acidic endosomal compartments. Accordingly, AID functions optimally near-neutral pH, while most A3s are acid-adapted (optimal pH 5.5-6.5). To gain a structural understanding for this pH disparity, we constructed high-resolution maps of AID catalytic activity vs pH. We found AID's optimal pH was 7.3 but it retained most (>70%) of the activity at pH 8. Probing of ssDNA-binding residues near the catalytic pocket, key for bending ssDNA into the pocket (e.g. R25) yielded mutants with altered pH preference, corroborating previous findings that the equivalent residue in APOBEC3G (H216) underlies its acidic pH preference. AID from bony fish exhibited more basic optimal pH (pH 7.5-8.1) and several R25-equivalent mutants altered pH preference. Comparison of pH optima across the AID/APOBEC3 family revealed an inverse correlation between positive surface charge and overall catalysis. The paralogue with the most robust catalytic activity (APOBEC3A) has the lowest surface charge and most acidic pH preference, while the paralogue with the most lethargic catalytic rate (AID) has the most positive surface charge and highest optimal pH. We suggest one possible mechanism is through surface charge dictating an overall optimal pH that is different from the optimal pH of the catalytic pocket microenvironment. These findings illuminate an additional structural mechanism that regulates AID/APOBEC3 mutagenesis.


Asunto(s)
Dominio Catalítico/genética , Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas/química , Proteínas/metabolismo , Transducción de Señal/genética , Biocatálisis , Citidina Desaminasa/genética , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Mutagénesis , Mutación Puntual , Unión Proteica , Proteínas/genética , Propiedades de Superficie , Transfección
10.
ACS Pharmacol Transl Sci ; 4(4): 1390-1407, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34423273

RESUMEN

Activation-induced cytidine deaminase (AID) initiates antibody diversification by mutating immunoglobulin loci in B lymphocytes. AID and related APOBEC3 (A3) enzymes also induce genome-wide mutations and lesions implicated in tumorigenesis and tumor progression. The most prevalent mutation signatures across diverse tumor genomes are attributable to the mistargeted mutagenic activities of AID/A3s. Thus, inhibiting AID/A3s has been suggested to be of therapeutic benefit. We previously used a computational-biochemical approach to gain insight into the structure of AID's catalytic pocket, which resulted in the discovery of a novel type of regulatory catalytic pocket closure that regulates AID/A3s that we termed the "Schrodinger's CATalytic pocket". Our findings were subsequently confirmed by direct structural studies. Here, we describe our search for small molecules that target the catalytic pocket of AID. We identified small molecules that inhibit purified AID, AID in cell extracts, and endogenous AID of lymphoma cells. Analogue expansion yielded derivatives with improved potencies. These were found to also inhibit A3A and A3B, the two most tumorigenic siblings of AID. Two compounds exhibit low micromolar IC50 inhibition of AID and A3A, exhibiting the strongest potency for A3A. Docking suggests key interactions between their warheads and residues lining the catalytic pockets of AID, A3A, and A3B and between the tails and DNA-interacting residues on the surface proximal to the catalytic pocket opening. Accordingly, mutants of these residues decreased inhibition potency. The chemistry and abundance of key stabilizing interactions between the small molecules and residues within and immediately outside the catalytic pockets are promising for therapeutic development.

11.
Nat Commun ; 12(1): 4442, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290256

RESUMEN

The forward genetic screen is a powerful, unbiased method to gain insights into biological processes, yet this approach has infrequently been used in vivo in mammals because of high resource demands. Here, we use in vivo somatic Cas9 mutagenesis to perform an in vivo forward genetic screen in mice to identify regulators of cardiomyocyte (CM) maturation, the coordinated changes in phenotype and gene expression that occur in neonatal CMs. We discover and validate a number of transcriptional regulators of this process. Among these are RNF20 and RNF40, which form a complex that monoubiquitinates H2B on lysine 120. Mechanistic studies indicate that this epigenetic mark controls dynamic changes in gene expression required for CM maturation. These insights into CM maturation will inform efforts in cardiac regenerative medicine. More broadly, our approach will enable unbiased forward genetics across mammalian organ systems.


Asunto(s)
Epigénesis Genética , Miocitos Cardíacos/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Recién Nacidos , Sistemas CRISPR-Cas , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Ratones , Mutagénesis , Miocitos Cardíacos/metabolismo , Fenotipo , Reproducibilidad de los Resultados , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
12.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206257

RESUMEN

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that modulate innate immune responses and play essential roles in the pathogenesis of heart diseases. Although important, the molecular mechanisms controlling cardiac TLR genes expression have not been clearly addressed. This study examined the expression pattern of Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, Tlr8, and Tlr9 in normal and disease-stressed mouse hearts. Our results demonstrated that the expression levels of cardiac Tlr3, Tlr7, Tlr8, and Tlr9 increased with age between neonatal and adult developmental stages, whereas the expression of Tlr5 decreased with age. Furthermore, pathological stress increased the expression levels of Tlr2, Tlr4, Tlr5, Tlr7, Tlr8, and Tlr9. Hippo-YAP signaling is essential for heart development and homeostasis maintenance, and YAP/TEAD1 complex is the terminal effector of this pathway. Here we found that TEAD1 directly bound genomic regions adjacent to Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, and Tlr9. In vitro, luciferase reporter data suggest that YAP/TEAD1 repression of Tlr4 depends on a conserved TEAD1 binding motif near Tlr4 transcription start site. In vivo, cardiomyocyte-specific YAP depletion increased the expression of most examined TLR genes, activated the synthesis of pro-inflammatory cytokines, and predisposed the heart to lipopolysaccharide stress. In conclusion, our data indicate that the expression of cardiac TLR genes is associated with age and activated by pathological stress and suggest that YAP/TEAD1 complex is a default repressor of cardiac TLR genes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad Innata , Miocitos Cardíacos/metabolismo , Receptores Toll-Like/genética , Factores de Transcripción/metabolismo , Factores de Edad , Animales , Citocinas/metabolismo , Regulación de la Expresión Génica , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAP
13.
Leuk Lymphoma ; 62(12): 3043-3046, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34142630

RESUMEN

Daratumumab, pomalidomide, and dexamethasone (DPd) is an FDA-approved 3rd or later line of therapy for myeloma. However, as there are limited published data on the efficacy of 2nd-line DPd, we conducted a retrospective analysis (n = 33). Herein, we report our center's data for 2nd-line DPd. Our patient population had a high amount of high risk cytogenetics (45.5%). The overall response rate (ORR) was 84.9% with a 1-year Progression Free Survival (PFS) of 37.7%. In standard risk myeloma (n = 18), the ORR was 88.9% and 1-year PFS was 61.1% (95% CI 42.3-88.3%). In high risk myeloma (45.5%, n = 15), the ORR was 80% with a 1-year PFS of 7.3% (95% CI 1.1-47.9%). This suggests that the efficacy of 2nd-line DPd in myeloma with high risk cytogenetics should be further investigated.


Asunto(s)
Mieloma Múltiple , Anticuerpos Monoclonales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Dexametasona/uso terapéutico , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Estudios Retrospectivos , Talidomida/análogos & derivados
14.
Nat Commun ; 12(1): 2559, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963182

RESUMEN

Multiple myeloma (MM) is characterized by the uncontrolled proliferation of plasma cells. Despite recent treatment advances, it is still incurable as disease progression is not fully understood. To investigate MM and its immune environment, we apply single cell RNA and linked-read whole genome sequencing to profile 29 longitudinal samples at different disease stages from 14 patients. Here, we collect 17,267 plasma cells and 57,719 immune cells, discovering patient-specific plasma cell profiles and immune cell expression changes. Patients with the same genetic alterations tend to have both plasma cells and immune cells clustered together. By integrating bulk genomics and single cell mapping, we track plasma cell subpopulations across disease stages and find three patterns: stability (from precancer to diagnosis), and gain or loss (from diagnosis to relapse). In multiple patients, we detect "B cell-featured" plasma cell subpopulations that cluster closely with B cells, implicating their cell of origin. We validate AP-1 complex differential expression (JUN and FOS) in plasma cell subpopulations using CyTOF-based protein assays, and integrated analysis of single-cell RNA and CyTOF data reveals AP-1 downstream targets (IL6 and IL1B) potentially leading to inflammation regulation. Our work represents a longitudinal investigation for tumor and microenvironment during MM progression and paves the way for expanding treatment options.


Asunto(s)
Linfocitos B/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Mieloma Múltiple/genética , Mieloma Múltiple/inmunología , Recurrencia Local de Neoplasia/genética , Microambiente Tumoral/inmunología , Anciano , Linfocitos B/citología , Linfocitos B/inmunología , Linaje de la Célula , Evolución Clonal/genética , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Haplotipos , Humanos , Interleucina-1beta/sangre , Interleucina-6/sangre , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Familia de Multigenes , Mieloma Múltiple/sangre , Mieloma Múltiple/patología , Mutación , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/inmunología , Proteínas Proto-Oncogénicas c-fos/sangre , Proteínas Proto-Oncogénicas c-jun/sangre , RNA-Seq , Transducción de Señal/genética , Transducción de Señal/inmunología , Análisis de la Célula Individual
16.
Leukemia ; 35(8): 2346-2357, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33479469

RESUMEN

T-cell-based immunotherapy, such as CAR-T cells and bispecific T-cell engagers (BiTEs), has shown promising clinical outcomes in many cancers; however, these therapies have significant limitations, such as poor pharmacokinetics and the ability to target only one antigen on the cancer cells. In multiclonal diseases, these therapies confer the development of antigen-less clones, causing tumor escape and relapse. In this study, we developed nanoparticle-based bispecific T-cell engagers (nanoBiTEs), which are liposomes decorated with anti-CD3 monoclonal antibodies (mAbs) targeting T cells, and mAbs targeting the cancer antigen. We also developed a nanoparticle that targets multiple cancer antigens by conjugating multiple mAbs against multiple cancer antigens for T-cell engagement (nanoMuTEs). NanoBiTEs and nanoMuTEs have a long half-life of about 60 h, which enables once-a-week administration instead of continuous infusion, while maintaining efficacy in vitro and in vivo. NanoMuTEs targeting multiple cancer antigens showed greater efficacy in myeloma cells in vitro and in vivo, compared to nanoBiTEs targeting only one cancer antigen. Unlike nanoBiTEs, treatment with nanoMuTEs did not cause downregulation (or loss) of a single antigen, and prevented the development of antigen-less tumor escape. Our nanoparticle-based immuno-engaging technology provides a solution for the major limitations of current immunotherapy technologies.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antígenos de Neoplasias/inmunología , Inmunoterapia/métodos , Mieloma Múltiple/terapia , Nanopartículas/administración & dosificación , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Nanopartículas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Patient Saf ; 17(8): e1800-e1805, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32217930

RESUMEN

INTRODUCTION: Significant resource is invested into investigation of adverse healthcare events. Outcomes of such investigations have varying degrees of effectiveness. The "hierarchy of effectiveness" model proposes system-focused changes have greater impact than person-focused actions. The traditional approach to investigation is root cause analysis (RCA); however, such an approach does not prioritize system-focused action generation. Learning team-based investigations are thought to generate more effective system-focused actions; however, this has not been evaluated. METHODS: Retrospective mixed methods evaluation of learning teams compared with RCA. Twenty-two learning team investigations compared with 22 RCA investigations, with quantitative assessment of the number of system-focused and person-focused actions generated. Assignment of the two different methods to incidents was not random, with learning teams being selected for cases, which were initially judged to be process-focused problems. Semistructured interviews were conducted with four learning team facilitators with thematic analysis to identify causes for outcome variations. RESULTS: Learning team investigations yielded a median of 7.5 actions compared with 3.5 actions for RCA: 57% of learning team actions were system focused versus 30% for RCA. We identified variations in personnel involved, culture of the investigation, and differences in the investigative approaches as potential drivers for these differences. CONCLUSIONS: We observed that learning team investigations that targeted process-focused problems generated more actions and a higher number of system-focused actions. There is a difference in culture created during learning team investigations. Although learning teams are not suitable for all investigations, they represent a readily reproducible and valuable addition to the investigative toolkit.


Asunto(s)
Análisis de Causa Raíz , Medicina Estatal , Hospitales , Humanos , Aprendizaje , Estudios Retrospectivos , Análisis de Causa Raíz/métodos
18.
FEBS Lett ; 595(1): 3-13, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33089497

RESUMEN

Activation-induced cytidine deaminase (AID) mediates somatic hypermutation and class-switch recombination of antibodies. Computational-biochemical and crystallography analyses of AID have identified three surface grooves for binding single-stranded DNA (ssDNA). Functional studies have also found evidence for RNA-binding motifs on AID. Although AID and the related apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) enzymes share a conserved core, AID uniquely features multiple substrate-binding motifs on its surface. Here we suggest that combinatorial deployment of AID's multiple ssDNA- or RNA-binding motifs yields many substrate-binding modes that can accommodate ssDNA, RNA, or DNA/RNA substrates of diverse structures. We also suggest that AID oligomerization generates yet additional novel substrate-binding modes. We propose that this plasticity in substrate choice is an evolved aspect of AID's structure that contributes to the regulation of its differential mutagenic activity at various loci.


Asunto(s)
Citidina Desaminasa/metabolismo , Genoma Humano , Mutágenos/metabolismo , Catálisis , Dominio Catalítico , Química Computacional , Citidina Desaminasa/química , ADN de Cadena Simple/metabolismo , Humanos , Modelos Moleculares , Mutágenos/toxicidad , Conformación Proteica , ARN/metabolismo , Especificidad por Sustrato
19.
Nat Commun ; 11(1): 6037, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247158

RESUMEN

Drug resistance and dose-limiting toxicities are significant barriers for treatment of multiple myeloma (MM). Bone marrow microenvironment (BMME) plays a major role in drug resistance in MM. Drug delivery with targeted nanoparticles have been shown to improve specificity and efficacy and reduce toxicity. We aim to improve treatments for MM by (1) using nanoparticle delivery to enhance efficacy and reduce toxicity; (2) targeting the tumor-associated endothelium for specific delivery of the cargo to the tumor area, and (3) synchronizing the delivery of chemotherapy (bortezomib; BTZ) and BMME-disrupting agents (ROCK inhibitor) to overcome BMME-induced drug resistance. We find that targeting the BMME with P-selectin glycoprotein ligand-1 (PSGL-1)-targeted BTZ and ROCK inhibitor-loaded liposomes is more effective than free drugs, non-targeted liposomes, and single-agent controls and reduces severe BTZ-associated side effects. These results support the use of PSGL-1-targeted multi-drug and even non-targeted liposomal BTZ formulations for the enhancement of patient outcome in MM.


Asunto(s)
Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Nanopartículas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Microambiente Tumoral , Quinasas Asociadas a rho/antagonistas & inhibidores , Amidas/farmacología , Amidas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Bortezomib/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Progresión de la Enfermedad , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Liposomas , Glicoproteínas de Membrana/metabolismo , Ratones , Selectina-P/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Piridinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Carga Tumoral , Microambiente Tumoral/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...