Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4695, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824138

RESUMEN

Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-ß (Aß) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aß in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aß co-aggregates account for ~50% of the mass of diffusible Aß aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aß tune disease-related functions of Aß aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aß. Selectively removing non-lipidated apoE4-Aß co-aggregates enhances clearance of toxic Aß by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E4 , Apolipoproteínas E , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Humanos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Animales , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Ratones , Femenino , Agregado de Proteínas , Masculino , Agregación Patológica de Proteínas/metabolismo , Ratones Transgénicos , Neuroglía/metabolismo
2.
Mol Cell Neurosci ; 114: 103631, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022327

RESUMEN

INTRODUCTION: Presenilin-1 (PSEN1) gene mutations are the most common cause of familial Alzheimer's disease (fAD) and are known to interfere with activity of the membrane imbedded γ-secretase complex. PSEN1 mutations have been shown to shift Amyloid-ß precursor protein (AßPP) processing toward amyloid-ß (Aß) 1-42 production. However, less is known about whether PSEN1 mutations may alter the activity of enzymes such as ADAM10, involved with non-amyloidogenic AßPP processing, and markers of oxidative stress. MATERIALS AND METHODS: Control and PSEN1 mutation (L286V and R278I) Human Neural Stem Cells were spontaneously differentiated into neuron and astrocyte co-cultures. Cell lysates and culture media were collected and stored at -80 °C until further analysis. ADAM10 protein expression, the ratio of AßPP forms and Aß1-42/40 were assessed. In addition, cellular redox status was quantified. RESULTS: The ratio of AßPP isoforms (130:110kDa) was significantly reduced in neuron and astrocyte co-cultures carrying PSEN1 gene mutations compared to control, and mature ADAM10 expression was lower in these cells. sAßPP-α was also significantly reduced in L286V mutation, but not in the R278I mutation cells. Both Aß1-40 and Aß1-42 were increased in conditioned cell media from L286V cells, however, this was not matched in R278I cells. The Aß1-42:40 ratio was significantly elevated in R278I cells. Markers of protein carbonylation and lipid peroxidation were altered in both l286V and R278I mutations. Antioxidant status was significantly lower in R278I cells compared to control cells. CONCLUSIONS: This data provides evidence that the PSEN1 mutations L286V and R278I significantly alter protein expression associated with AßPP processing and cellular redox status. In addition, this study highlights the potential for iPSC-derived neuron and astrocyte co-cultures to be used as an early human model of fAD.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología , Péptidos beta-Amiloides/metabolismo , Astrocitos/citología , Diferenciación Celular/fisiología , Técnicas de Cocultivo , Humanos , Células Madre Pluripotentes Inducidas/citología , Mutación , Neuronas/citología , Presenilina-1/genética
3.
Front Neurosci ; 12: 590, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233290

RESUMEN

The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the "core battery" of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...