Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Endocrinol ; 30(7): 796-808, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27244477

RESUMEN

Monocarboxylate transporters (MCTs) belong to the SLC16 family within the major facilitator superfamily of transmembrane transporters. MCT8 is a thyroid hormone transporter mutated in the Allan-Herndon-Dudley syndrome, a severe psychomotor retardation syndrome. MCT10 is closely related to MCT8 and is known as T-type amino acid transporter. Both transporters mediate T3 transport, but although MCT8 also transports rT3 and T4, these compounds are not efficiently transported by MCT10, which, in contrast, transports aromatic amino acids. Based on the 58% amino acid identity within the transmembrane regions among MCT8 and MCT10, we reasoned that substrate specificity may be primarily determined by a small number of amino acid differences between MCT8 and MCT10 along the substrate translocation channel. Inspecting the homology model of MCT8 and a structure-guided alignment between both proteins, we selected 8 amino acid positions and prepared chimeric MCT10 proteins with selected amino acids changed to the corresponding amino acids in MCT8. The MCT10 mutant harboring 8 amino acid substitutions was stably expressed in Madin-Darby canine kidney 1 cells and found to exhibit T4 transport activity. We then successively reduced the number of amino acid substitutions and eventually identified a minimal set of 2-3 amino acid exchanges which were sufficient to allow T4 transport. The resulting MCT10 chimeras exhibited KM values for T4 similar to MCT8 but transported T4 at a slower rate. The acquisition of T4 transport by MCT10 was associated with complete loss of the capacity to transport Phe, when Tyr184 was mutated to Phe.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/metabolismo , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos/química , Aminoácidos/genética , Animales , Biotinilación , Western Blotting , Línea Celular , Cromatografía Liquida , Perros , Transportadores de Ácidos Monocarboxílicos/genética , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Hormonas Tiroideas/metabolismo , Triyodotironina/metabolismo , Xenopus
2.
Eur Thyroid J ; 4(Suppl 1): 42-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26601072

RESUMEN

Thyroid hormones are transported across cell membranes by transmembrane transporter proteins, for example by members of the monocarboxylate transporter (MCT) and the L-type amino acid transporter (LAT) families. LATs consist of a light chain (e.g. LAT2) and a heavy chain (CD98), which is essential for their cell surface expression and functionality. The specificity of Lat2 for thyroid hormones and their metabolites and its role in their transport was not fully clear. This fact motivated us to establish a cell system to elucidate the uptake of thyroid hormones and their metabolites by mouse Lat2. The coinjection of cRNA coding for Lat2 and CD98 into Xenopus laevis oocytes resulted in a markedly increased level of 3,3'-diiodo-L-thyronine (3,3'-T2) and to some extent also enhanced T3 transport. To gain insight into properties of thyroid hormones and their metabolites transported by Lat2, we inhibited 3,3'-T2 uptake by various iodothyronine derivatives. T1 and T2 derivatives as well as 2-aminobicyclo-[2, 2,1]-heptane-2-carboxylic acid strongly competed with 3,3'-T2 uptake. In addition, we performed T2 uptake measurements with the thyroid hormone-specific transporter MCT8. For both Lat2 and MCT8, Km values in a low micromolar range were calculated. We demonstrated that oocytes are a suitable system for thyroid hormone transport studies mediated by Lat2. Our data indicates that Lat2 compared to other thyroid hormone transporters prefers 3,3'-T2 as the substrate. Thus, Lat2 might contribute to the availability of thyroid hormone by importing and/or exporting 3,3'-T2, which is generated either by T3 inactivation or by rapid deiodinase 1-mediated rT3 degradation.

3.
Endocrinology ; 156(11): 4345-55, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26305885

RESUMEN

Thyroid hormone (TH) transporters facilitate cellular TH influx and efflux, which is paramount for normal physiology. The L-type amino acid transporters LAT1 and LAT2 are known to facilitate TH transport. However, the role of LAT3, LAT4, and LAT5 is still unclear. Therefore, the aim of this study was to further characterize TH transport by LAT1 and LAT2 and to explore possible TH transport by LAT3, LAT4, and LAT5. FLAG-LAT1-5 constructs were transiently expressed in COS1 cells. LAT1 and LAT2 were cotransfected with the CD98 heavy chain. Cellular transport was measured using 10 nM (125)I-labeled T4, T3, rT3, 3,3'-T2, and 10 µM [(125)I]3'-iodotyrosine (MIT) as substrates. Intracellular metabolism of these substrates was determined in cells cotransfected with either of the LATs with type 1 or type 3 deiodinase. LAT1 facilitated cellular uptake of all substrates and LAT2 showed a net uptake of T3, 3,3'-T2, and MIT. Expression of LAT3 or LAT4 did not affect transport of T4 and T3 but resulted in the decreased cellular accumulation of 3,3'-T2 and MIT. LAT5 did not facilitate the transport of any substrate. Cotransfection with LAT3 or LAT4 strongly diminished the cellular accumulation of 3,3'-T2 and MIT by LAT1 and LAT2. These data were confirmed by metabolism studies. LAT1 and LAT2 show distinct preferences for the uptake of the different iodocompounds, whereas LAT3 and LAT4 specifically facilitate the 3,3'-T2 and MIT efflux. Together our findings suggest that different sets of transporters with specific influx or efflux capacities may cooperate to regulate the cellular thyroid state.


Asunto(s)
Sistema de Transporte de Aminoácidos L/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Humanos
4.
Mol Endocrinol ; 29(6): 933-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25945809

RESUMEN

Thyroid hormones (THs) are transported across cell membranes by different transmembrane transporter proteins. In previous studies, we showed marked 3,3'-diiodothyronine (3,3'-T2) but moderate T3 uptake by the L-type amino acid transporter 2 (Lat2). We have now studied the structure-function relationships of this transporter and TH-like molecules. Our Lat2 homology model is based on 2 crystal structures of the homologous 12-transmembrane helix transporters arginine/agmatine antiporter and amino acid/polyamine/organocation transporter. Model-driven mutagenesis of residues lining an extracellular recognition site and a TH-traversing channel identified 9 sensitive residues. Using Xenopus laevis oocytes as expression system, we found that side chain shortening (N51S, N133S, N248S, and Y130A) expanded the channel and increased 3,3'-T2 transport. Side chain enlargements (T140F, Y130R, and I137M) decreased 3,3'-T2 uptake, indicating channel obstructions. The opposite results with mutations maintaining (F242W) or impairing (F242V) uptake suggest that F242 may have a gating function. Competitive inhibition studies of 14 TH-like compounds revealed that recognition by Lat2 requires amino and carboxylic acid groups. The size of the adjacent hydrophobic group is restricted. Bulky substituents in positions 3 and 5 of the tyrosine ring are allowed. The phenolic ring may be enlarged, provided that the whole molecule is flexible enough to fit into the distinctly shaped TH-traversing channel of Lat2. Taken together, the next Lat2 features were identified 1) TH recognition site; 2) TH-traversing channel in the center of Lat2; and 3) switch site that potentially facilitates intracellular substrate release. Together with identified substrate features, these data help to elucidate the molecular mechanisms and role of Lat2 in T2 transport.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/química , Sistema de Transporte de Aminoácidos y+/metabolismo , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/química , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/metabolismo , Hormonas Tiroideas/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Animales , Transporte Biológico , Cristalografía por Rayos X , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/genética , Ratones , Modelos Biológicos , Mutación/genética , Fenilalanina/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato , Xenopus laevis
5.
J Mol Endocrinol ; 54(1): 39-50, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25527620

RESUMEN

The monocarboxylate transporter 8 (MCT8) is a member of the major facilitator superfamily (MFS). These membrane-spanning proteins facilitate translocation of a variety of substrates, MCT8 specifically transports iodothyronines. Mutations in MCT8 are the underlying cause of severe X-linked psychomotor retardation. At the molecular level, such mutations led to deficiencies in substrate translocation due to reduced cell-surface expression, impaired substrate binding, or decreased substrate translocation capabilities. However, the causal relationships between genotypes, molecular features of mutated MCT8, and patient characteristics have not yet been comprehensively deciphered. We investigated the relationship between pathogenic mutants of MCT8 and their capacity to form dimers (presumably oligomeric structures) as a potential regulatory parameter of the transport function of MCT8. Fourteen pathogenic variants of MCT8 were investigated in vitro with respect to their capacity to form oligomers. Particular mutations close to the substrate translocation channel (S194F, A224T, L434W, and R445C) were found to inhibit dimerization of MCT8. This finding is in contrast to those for other transporters or transmembrane proteins, in which substitutions predominantly at the outer-surface inhibit oligomerization. Moreover, specific mutations of MCT8 located in transmembrane helix 2 (del230F, V235M, and ins236V) increased the capacity of MCT8 variants to dimerize. We analyzed the localization of MCT8 dimers in a cellular context, demonstrating differences in MCT8 dimer formation and distribution. In summary, our results add a new link between the functions (substrate transport) and protein organization (dimerization) of MCT8, and might be of relevance for other members of the MFS. Finally, the findings are discussed in relationship to functional data combined with structural-mechanistical insights into MCT8.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos/genética , Animales , Células COS , Chlorocebus aethiops , Humanos , Mutación INDEL , Discapacidad Intelectual Ligada al Cromosoma X/genética , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonía Muscular/genética , Atrofia Muscular/genética , Mutación Missense , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Simportadores
6.
Thyroid Res ; 4 Suppl 1: S4, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21835051

RESUMEN

BACKGROUND: The monocarboxylate transporter 8 (MCT8) is a member of the major facilitator superfamily (MFS) and transports specificly iodothyronines. MCT8 mutations are the underlying cause of a syndrome of severe X-linked psychomotor retardation known as the Allan-Herndon-Dudley syndrome. This syndrome is characterized by abnormally high T3, low/normal T4 serum levels and slightly elevated serum TSH. To date, more than 25 pathogenic mutations in hMCT8 are known and they are valuable indicators of important regions for structural and functional MCT8 properties. METHODS: We designed a structural human MCT8 model and studied reported pathogenic missense mutations with focus on the estimation of those amino acid positions which are probably sensitive for substrate transport. Furthermore, assuming similarities between determinants of T3 binding observed in the published crystal structure of the thyroid hormone receptor beta occupied by its ligand T3 and the structural MCT8 model, we explore potential T3 binding sites in the MCT8 substrate channel cavity. RESULTS: We found that all known pathogenic missense mutations are located exclusively in the transmembrane helices and to a high degree at conserved residues among the MCT family. Furthermore, mutations either of or to prolines/glycines are located mainly at helices 9-12 and are expected to cause steric clashes or structural misfolding. In contrast, several other mutations are close to the potential substrate channel and affected amino acids are likely involved in the switching mechanism between different transporter conformations. Finally, three potential substrate binding sites are predicted for MCT8. CONCLUSIONS: Naturally occurring mutations of MCT8 provide molecular insights into protein regions important for protein folding, substrate binding and the switching mechanism during substrate transport. Future studies guided by this information should help to clarify structure-function relationships at MCT8 which may bear broader relevance for other members of the MCT family. This includes decoding of the complete set of transport-sensitive residue positions and description of structural re-arrangements during transport.

7.
Thyroid Res ; 4 Suppl 1: S7, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21835054

RESUMEN

Thyroid hormones (TH) are essential for the development of the human brain, growth and cellular metabolism. Investigation of TH transporters became one of the emerging fields in thyroid research after the discovery of inactivating mutations in the Monocarboxylate transporter 8 (MCT8), which was found to be highly specific for TH transport. However, additional transmembrane transporters are also very important for TH uptake and efflux in different cell types. They transport TH as secondary substrates and include the aromatic amino acid transporting MCT10, the organic anion transporting polypeptides (e.g. OATP1C1, OATP1A2, OPTP1A4) and the large neutral amino acid transporters (LAT1 and LAT2). These TH transporters characteristically possess 12 transmembrane spanners but due to the strong differing sequences between the three transporter families we assume an identical conformation is not very likely. In contrast to the others, the LAT family members form a heterodimer with the escort protein 4F2hc/CD98. A comparison of sequence proportions, locations and types of functional sensitive features for TH transport discovered by mutations, revealed that transport sensitive charged residues occur as conserved amino acids only within each family of the transporter types but not in all putative TH transporters. Based on the lack of highly conserved sensitive charged residues throughout the three transporter families as a common counterpart for the amino acid moiety of the substrates, we conclude that the molecular transport mechanism is likely organized either a) by different molecular determinants in the divergent transporter types or b) the counterparts for the substrates` amino acid moiety at the transporter are not any charged side chains but other proton acceptors or donators. However, positions of transport sensitive residues coincide at transmembrane helix 8 in the TH transporter MCT8, OATP1C1 and another amino acid transporter, the L-cystine and L-glutamate exchanger xCT, which is highly homologous to LAT1 and LAT2. Here we review the data available and compare similarities and differences between these primary and secondary TH transporters regarding sequences, topology, potential structures, trafficking to the plasma membrane, molecular features and locations of transport sensitive functionalities. Thereby, we focus on TH transporters occurring in the blood-brain barrier.

8.
Glia ; 59(3): 463-71, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21264952

RESUMEN

Cellular thyroid hormone uptake and efflux are mediated by transmembrane transport proteins. One of these, monocarboxylate transporter 8 (MCT8) is mutated in Allan-Herndon-Dudley syndrome, a severe mental retardation associated with abnormal thyroid hormone constellations. Since mice deficient in Mct8 exhibit a milder neurological phenotype than patients, we hypothesized that alternative thyroid hormone transporters may compensate in murine brain cells for the lack of Mct8. Using qPCR, Western Blot, and immunocytochemistry, we investigated the expression of three different thyroid hormone transporters, i.e., Mct8 and L-type amino acid transporters Lat1 and Lat2, in mouse brain. All three thyroid hormone transporters are expressed from corticogenesis and peak around birth. Primary cultures of neurons and astrocytes express Mct8, Lat1, and Lat2. Microglia specifically expresses Mct10 and Slco4a1 in addition to high levels of Lat2 mRNA and protein. As in vivo, a brain microvascular endothelial cell line expressed Mct8 and Lat1. 158N, an oligodendroglial cell line expressed Mct8 protein, consistent with delayed myelination in MCT8-deficient patients. Functional T(3)- and T(4)-transport assays into primary astrocytes showed K(M) values of 4.2 and 3.7 µM for T(3) and T(4). Pharmacological inhibition of L-type amino acid transporters by BCH and genetic inactivation of Lat2 reduced astrocytic T(3) uptake to the same extent. BSP, a broad spectrum inhibitor, including Mct8, reduced T(3) uptake further suggesting the cooperative activity of several T(3) transporters in astrocytes.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana/genética , Neuronas/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Sistema de Transporte de Aminoácidos y+/biosíntesis , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+L , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/metabolismo , Encéfalo/citología , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/biosíntesis , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Neuronas/citología , Transporte de Proteínas/fisiología , Simportadores
9.
J Biol Chem ; 285(36): 28054-63, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20628049

RESUMEN

Monocarboxylate transporter 8 (MCT8, SLC16A2) is a thyroid hormone (TH) transmembrane transport protein mutated in Allan-Herndon-Dudley syndrome, a severe X-linked psychomotor retardation. The neurological and endocrine phenotypes of patients deficient in MCT8 function underscore the physiological significance of carrier-mediated TH transmembrane transport. MCT8 belongs to the major facilitator superfamily of 12 transmembrane-spanning proteins and mediates energy-independent bidirectional transport of iodothyronines across the plasma membrane. Structural information is lacking for all TH transmembrane transporters. To gain insight into structure-function relations in TH transport, we chose human MCT8 as a paradigm. We systematically performed conventional and liquid chromatography-tandem mass spectrometry-based uptake measurements into MCT8-transfected cells using a large number of compounds structurally related to iodothyronines. We found that human MCT8 is specific for L-iodothyronines and requires at least one iodine atom per aromatic ring. Neither thyronamines, decarboxylated metabolites of iodothyronines, nor triiodothyroacetic acid and tetraiodothyroacetic acid, TH derivatives lacking both chiral center and amino group, are substrates for MCT8. The polyphenolic flavonoids naringenin and F21388, potent competitors for TH binding at transthyretin, did not inhibit T(3) transport, suggesting that MCT8 can discriminate its ligand better than transthyretin. Bioinformatic studies and a first molecular homology model of MCT8 suggested amino acids potentially involved in substrate interaction. Indeed, alanine mutation of either Arg(445) (helix 8) or Asp(498) (helix 10) abrogated T(3) transport activity of MCT8, supporting their predicted role in substrate recognition. The MCT8 model allows us to rationalize potential interactions of amino acids including those mutated in patients with Allan-Herndon-Dudley syndrome.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hormonas Tiroideas/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Transporte Biológico , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos/genética , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Homología de Secuencia de Aminoácido , Simportadores , Triyodotironina Inversa/metabolismo
10.
Neurosci Lett ; 478(1): 5-8, 2010 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-20435089

RESUMEN

Transport of thyroid hormones across the plasma membrane is required for binding to their nuclear receptors. Monocarboxylate transporter 8 (MCT8) is a plasma membrane thyroid hormone transport protein, which has recently gained much attention, since mutations in MCT8 are associated with severe mental retardation in patients afflicted with the Allan-Herndon-Dudley syndrome. MCT8 is expressed along the blood-brain-barrier and on central neurons. We have found that desipramine (DMI), a tricyclic antidepressant, acts as an inhibitor of thyroid hormone transport by MCT8. Uptake of 3,5,3'-triiodo-L-thyronine (T(3)) into primary cortical neurons could be blocked with desipramine as well as with the known, but unspecific, inhibitor bromosulphtalein (BSP). T(3) uptake by neurons derived from Mct8-deficient cells was not further decreased by DMI. In a heterologous expression system, both human MCT8 and its close homolog, MCT10, were sensitive to inhibition by DMI. Kinetic experiments demonstrated a non-competitive mode of inhibition. Numerous interactions between thyroid hormones, depressive symptoms, and antidepressant treatments have been reported in the literature. Our findings add to the evidence that antidepressant drugs may affect CNS thyroid hormone function.


Asunto(s)
Antidepresivos Tricíclicos/farmacología , Desipramina/farmacología , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas/efectos de los fármacos , Triyodotironina/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Perros , Humanos , Ratones , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Neuronas/metabolismo , Sulfobromoftaleína/farmacología , Simportadores
11.
J Mol Endocrinol ; 43(6): 263-71, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19648159

RESUMEN

Mutations in the gene encoding the thyroid hormone transporter, monocarboxylate transporter 8 (MCT8), underlie severe mental retardation. We wanted to understand the functional consequences of a series of missense mutations in MCT8 in order to identify therapeutic options for affected patients. We established cell lines stably expressing 12 MCT8 variants in JEG1 and MDCK1 cells. The cell lines were characterized according to MCT8 mRNA and protein expression, tri-iodothyronine (T(3)) transport activity, substrate K(M) characteristics, surface expression, and responsiveness to T(3) preincubation and chemical chaperones. Functional activities of ins235V and L568P MCT8 mutants depend on the cell type in which they are expressed. These mutants and R271H exhibited considerable transport activity when present at the cell surface as verified by surface biotinylation and kinetic analysis. Most mutants, however, were inactive in T(3) transport even when present at the cell surface (e.g. S194F, A224V, DeltaF230, L512P). Preincubation of G558D with T(3) increased T(3) uptake in MDCK1 cells to a small, but significant, extent. Chemical chaperones were ineffective. The finding that the cell type determines surface expression and T(3) transport activities of missense mutants in MCT8 may be important to understand phenotypic variability among carriers of different mutations. In particular, the clinical observation that the severity of derangements of thyroid hormone levels does not correlate with mental impairments of the patients may be based on different residual activity of mutant MCT8 in different cell types.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos/metabolismo , Triyodotironina/metabolismo , Animales , Northern Blotting , Western Blotting , Línea Celular , Perros , Células HeLa , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Mutación Missense , Simportadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...