Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Res Physiol ; 4: 47-59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746826

RESUMEN

µ-Crystallin, encoded by the CRYM gene, binds the thyroid hormones, T3 and T4. Because T3 and T4 are potent regulators of metabolism and gene expression, and CRYM levels in human skeletal muscle can vary widely, we investigated the effects of overexpression of Crym. We generated transgenic mice, Crym tg, that expressed Crym protein specifically in skeletal muscle at levels 2.6-147.5 fold higher than in controls. Muscular functions, Ca2+ transients, contractile force, fatigue, running on treadmills or wheels, were not significantly altered, although T3 levels in tibialis anterior (TA) muscle were elevated ~190-fold and serum T4 was decreased 1.2-fold. Serum T3 and thyroid stimulating hormone (TSH) levels were unaffected. Crym transgenic mice studied in metabolic chambers showed a significant decrease in the respiratory exchange ratio (RER) corresponding to a 13.7% increase in fat utilization as an energy source compared to controls. Female but not male Crym tg mice gained weight more rapidly than controls when fed high fat or high simple carbohydrate diets. Although labeling for myosin heavy chains showed no fiber type differences in TA or soleus muscles, application of machine learning algorithms revealed small but significant morphological differences between Crym tg and control soleus fibers. RNA-seq and gene ontology enrichment analysis showed a significant shift towards genes associated with slower muscle function and its metabolic correlate, ß-oxidation. Protein expression showed a similar shift, though with little overlap. Our study shows that µ-crystallin plays an important role in determining substrate utilization in mammalian muscle and that high levels of µ-crystallin are associated with a shift toward greater fat metabolism.

2.
Endocr Regul ; 55(2): 89-102, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020530

RESUMEN

µ-Crystallin is a NADPH-regulated thyroid hormone binding protein encoded by the CRYM gene in humans. It is primarily expressed in the brain, muscle, prostate, and kidney, where it binds thyroid hormones, which regulate metabolism and thermogenesis. It also acts as a ketimine reductase in the lysine degradation pathway when it is not bound to thyroid hormone. Mutations in CRYM can result in non-syndromic deafness, while its aberrant expression, predominantly in the brain but also in other tissues, has been associated with psychiatric, neuromuscular, and inflammatory diseases. CRYM expression is highly variable in human skeletal muscle, with 15% of individuals expressing ≥13 fold more CRYM mRNA than the median level. Ablation of the Crym gene in murine models results in the hypertrophy of fast twitch muscle fibers and an increase in fat mass of mice fed a high fat diet. Overexpression of Crym in mice causes a shift in energy utilization away from glycolysis towards an increase in the catabolism of fat via ß-oxidation, with commensurate changes of metabolically involved transcripts and proteins. The history, attributes, functions, and diseases associated with CRYM, an important modulator of metabolism, are reviewed.


Asunto(s)
Proteínas Portadoras/fisiología , Cristalinas/fisiología , Proteínas de la Membrana/fisiología , Trastornos Mentales , Enfermedades del Sistema Nervioso , Hormonas Tiroideas/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Cristalinas mu , Proteínas de Unión a Hormona Tiroide
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...