Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Database (Oxford) ; 20242024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167718

RESUMEN

Microbiome research has made significant gains with the evolution of sequencing technologies. Ensuring comparability between studies and enhancing the findability, accessibility, interoperability and reproducibility of microbiome data are crucial for maximizing the value of this growing body of research. Addressing the challenges of standardized metadata reporting, collection and curation, the Microbiome Working Group of the Human Hereditary and Health in Africa (H3Africa) consortium aimed to develop a comprehensive solution. In this paper, we present the Microbiome Research Data Toolkit, a versatile tool designed to standardize microbiome research metadata, facilitate MIxS-MIMS and PhenX reporting, standardize prospective collection of participant biological and lifestyle data, and retrospectively harmonize such data. This toolkit enables past, present and future microbiome research endeavors to collaborate effectively, fostering novel collaborations and accelerating knowledge discovery in the field. Database URL: https://doi.org/10.25375/uct.24218999.v2.


Asunto(s)
Metadatos , Microbiota , Humanos , Bases de Datos Factuales
2.
J Infect Dis ; 230(2): e363-e373, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365443

RESUMEN

BACKGROUND: The aim of this study was to characterize the epidemiology of human seasonal coronaviruses (HCoVs) in southern Malawi. METHODS: We tested for HCoVs 229E, OC43, NL63, and HKU1 using real-time polymerase chain reaction (PCR) on upper respiratory specimens from asymptomatic controls and individuals of all ages recruited through severe acute respiratory illness (SARI) surveillance at Queen Elizabeth Central Hospital, Blantyre, and a prospective influenza-like illness (ILI) observational study between 2011 and 2017. We modeled the probability of having a positive PCR for each HCoV using negative binomial models, and calculated pathogen-attributable fractions (PAFs). RESULTS: Overall, 8.8% (539/6107) of specimens were positive for ≥1 HCoV. OC43 was the most frequently detected HCoV (3.1% [191/6107]). NL63 was more frequently detected in ILI patients (adjusted incidence rate ratio [aIRR], 9.60 [95% confidence interval {CI}, 3.25-28.30]), while 229E (aIRR, 8.99 [95% CI, 1.81-44.70]) was more frequent in SARI patients than asymptomatic controls. In adults, 229E and OC43 were associated with SARI (PAF, 86.5% and 89.4%, respectively), while NL63 was associated with ILI (PAF, 85.1%). The prevalence of HCoVs was similar between children with SARI and controls. All HCoVs had bimodal peaks but distinct seasonality. CONCLUSIONS: OC43 was the most prevalent HCoV in acute respiratory illness of all ages. Individual HCoVs had distinct seasonality that differed from temperate settings.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Estaciones del Año , Humanos , Malaui/epidemiología , Masculino , Adulto , Preescolar , Femenino , Niño , Adolescente , Lactante , Persona de Mediana Edad , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Adulto Joven , Coronavirus/genética , Coronavirus/aislamiento & purificación , Estudios Prospectivos , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Anciano , Recién Nacido
3.
Database (Oxford) ; 20242024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38204360

RESUMEN

There is growing evidence that comprehensive and harmonized metadata are fundamental for effective public data reusability. However, it is often challenging to extract accurate metadata from public repositories. Of particular concern is the metagenomic data related to African individuals, which often omit important information about the particular features of these populations. As part of a collaborative consortium, H3ABioNet, we created a web portal, namely the African Human Microbiome Portal (AHMP), exclusively dedicated to metadata related to African human microbiome samples. Metadata were collected from various public repositories prior to cleaning, curation and harmonization according to a pre-established guideline and using ontology terms. These metadata sets can be accessed at https://microbiome.h3abionet.org/. This web portal is open access and offers an interactive visualization of 14 889 records from 70 bioprojects associated with 72 peer reviewed research articles. It also offers the ability to download harmonized metadata according to the user's applied filters. The AHMP thereby supports metadata search and retrieve operations, facilitating, thus, access to relevant studies linked to the African Human microbiome. Database URL:  https://microbiome.h3abionet.org/.


Asunto(s)
Metadatos , Microbiota , Humanos , Metagenoma , Bases de Datos Factuales , Metagenómica , Microbiota/genética
4.
J Infect Dis ; 226(7): 1243-1255, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35403683

RESUMEN

BACKGROUND: Human immunodeficiency virus-exposed uninfected (HEU) infants are a rapidly expanding population in sub-Saharan Africa and are highly susceptible to encapsulated bacterial disease in the first year of life. The mechanism of this increased risk is still poorly understood. We investigated whether human immunodeficiency virus (HIV)-exposure dysregulates HEU immunity, vaccine-antibody production, and human herpes virus amplify this effect. METHODS: Thirty-four HIV-infected and 44 HIV-uninfected pregnant women were recruited into the birth cohort and observed up to 6 weeks of age; and then a subsequent 43 HIV-infected and 61 HIV-uninfected mother-infant pairs were recruited into a longitudinal infant cohort at either: 5-7 to 14-15; or 14-15 to 18-23 weeks of age. We compared monocyte function, innate and adaptive immune cell phenotype, and vaccine-induced antibody responses between HEU and HIV-unexposed uninfected (HU) infants. RESULTS: We demonstrate (1) altered monocyte phagosomal function and B-cell subset homeostasis and (2) lower vaccine-induced anti-Haemophilus influenzae type b (Hib) and anti-tetanus toxoid immunoglobulin G titers in HEU compared with HU infants. Human herpes virus infection was similar between HEU and HU infants. CONCLUSIONS: In the era of antiretroviral therapy-mediated viral suppression, HIV exposure may dysregulate monocyte and B-cell function, during the vulnerable period of immune maturation. This may contribute to the high rates of invasive bacterial disease and pneumonia in HEU infants.


Asunto(s)
Infecciones por VIH , Monocitos , Femenino , VIH , Humanos , Inmunoglobulina G , Lactante , Fenotipo , Embarazo , Toxoide Tetánico
5.
Microb Genom ; 8(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294336

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is adaptively evolving to ensure its persistence within human hosts. It is therefore necessary to continuously monitor the emergence and prevalence of novel variants that arise. Importantly, some mutations have been associated with both molecular diagnostic failures and reduced or abrogated next-generation sequencing (NGS) read coverage in some genomic regions. Such impacts are particularly problematic when they occur in genomic regions such as those that encode the spike (S) protein, which are crucial for identifying and tracking the prevalence and dissemination dynamics of concerning viral variants. Targeted Sanger sequencing presents a fast and cost-effective means to accurately extend the coverage of whole-genome sequences. We designed a custom set of primers to amplify a 401 bp segment of the receptor-binding domain (RBD) (between positions 22698 and 23098 relative to the Wuhan-Hu-1 reference). We then designed a Sanger sequencing wet-laboratory protocol. We applied the primer set and wet-laboratory protocol to sequence 222 samples that were missing positions with key mutations K417N, E484K, and N501Y due to poor coverage after NGS sequencing. Finally, we developed SeqPatcher, a Python-based computational tool to analyse the trace files yielded by Sanger sequencing to generate consensus sequences, or take preanalysed consensus sequences in fasta format, and merge them with their corresponding whole-genome assemblies. We successfully sequenced 153 samples of 222 (69 %) using Sanger sequencing and confirmed the occurrence of key beta variant mutations (K417N, E484K, N501Y) in the S genes of 142 of 153 (93 %) samples. Additionally, one sample had the Y508F mutation and four samples the S477N. Samples with RT-PCR Ct scores ranging from 13.85 to 37.47 (mean=25.70) could be Sanger sequenced efficiently. These results show that our method and pipeline can be used to improve the quality of whole-genome assemblies produced using NGS and can be used with any pairs of the most used NGS and Sanger sequencing platforms.


Asunto(s)
Genoma Viral , SARS-CoV-2/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación
6.
J Pers Med ; 12(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35207753

RESUMEN

Genomics data are currently being produced at unprecedented rates, resulting in increased knowledge discovery and submission to public data repositories. Despite these advances, genomic information on African-ancestry populations remains significantly low compared with European- and Asian-ancestry populations. This information is typically segmented across several different biomedical data repositories, which often lack sufficient fine-grained structure and annotation to account for the diversity of African populations, leading to many challenges related to the retrieval, representation and findability of such information. To overcome these challenges, we developed the African Genomic Medicine Portal (AGMP), a database that contains metadata on genomic medicine studies conducted on African-ancestry populations. The metadata is curated from two public databases related to genomic medicine, PharmGKB and DisGeNET. The metadata retrieved from these source databases were limited to genomic variants that were associated with disease aetiology or treatment in the context of African-ancestry populations. Over 2000 variants relevant to populations of African ancestry were retrieved. Subsequently, domain experts curated and annotated additional information associated with the studies that reported the variants, including geographical origin, ethnolinguistic group, level of association significance and other relevant study information, such as study design and sample size, where available. The AGMP functions as a dedicated resource through which to access African-specific information on genomics as applied to health research, through querying variants, genes, diseases and drugs. The portal and its corresponding technical documentation, implementation code and content are publicly available.

7.
F1000Res ; 11: 1267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36816807

RESUMEN

Background: The identification of differentially expressed genes and their associated biological processes, molecular function, and cellular components are important for genetic diseases studies because they present potential biomarkers and therapeutic targets. Methods: In this study, we developed an o²S²PARC template representing an interactive pipeline for the gene expression data visualization and ontologies data analysis and visualization.  To demonstrate the usefulness of the tool, we performed a case study on a publicly available dataset. Results: The tool enables users to identify the differentially expressed genes (DEGs) and visualize them in a volcano plot format. The ontologies associated with the DEGs are determined and visualized in barplots. Conclusions: The "Expression data visualization" template is publicly available on the o²S²PARC platform.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Visualización de Datos , Ontología de Genes , Expresión Génica
8.
Virus Evol ; 7(1): veab041, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34035952

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes acute, highly transmissible respiratory infection in humans and a wide range of animal species. Its rapid global spread has resulted in a major public health emergency, necessitating commensurately rapid research to improve control strategies. In particular, the ability to effectively retrace transmission chains in outbreaks remains a major challenge, partly due to our limited understanding of the virus' underlying evolutionary dynamics within and between hosts. We used high-throughput sequencing whole-genome data coupled with bottleneck analysis to retrace the pathways of viral transmission in two nosocomial outbreaks that were previously characterised by epidemiological and phylogenetic methods. Additionally, we assessed the mutational landscape, selection pressures, and diversity at the within-host level for both outbreaks. Our findings show evidence of within-host selection and transmission of variants between samples. Both bottleneck and diversity analyses highlight within-host and consensus-level variants shared by putative source-recipient pairs in both outbreaks, suggesting that certain within-host variants in these outbreaks may have been transmitted upon infection rather than arising de novo independently within multiple hosts. Overall, our findings demonstrate the utility of combining within-host diversity and bottleneck estimations for elucidating transmission events in SARS-CoV-2 outbreaks, provide insight into the maintenance of viral genetic diversity, provide a list of candidate targets of positive selection for further investigation, and demonstrate that within-host variants can be transferred between patients. Together these results will help in developing strategies to understand the nature of transmission events and curtail the spread of SARS-CoV-2.

9.
Database (Oxford) ; 20212021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33864455

RESUMEN

African genomic medicine and microbiome datasets are usually not well characterized in terms of their origin, making it difficult to find and extract data for specific African ethnic groups or even countries. The Pan-African H3Africa Bioinformatics Network (H3ABioNet) recognized the need for developing data portals for African genomic medicine and African microbiomes to address this and ran a hackathon to initiate their development. The two portals were designed and significant progress was made in their development during the hackathon. All the participants worked in a very synergistic and collaborative atmosphere in order to achieve the hackathon's goals. The participants were divided into content and technical teams and worked over a period of 6 days. In response to one of the survey questions of what the participants liked the most during the hackathon, 55% of the hackathon participants highlighted the familial and friendly atmosphere, the team work and the diversity of team members and their expertise. This paper describes the preparations for the portals hackathon and the interaction between the participants and reflects upon the lessons learned about its impact on successfully developing the two data portals as well as building scientific expertise of younger African researchers. Database URL: The code for developing the two portals was made publicly available in GitHub repositories: [https://github.com/codemeleon/Database; https://github.com/codemeleon/AfricanMicrobiomePortal].


Asunto(s)
Biología Computacional , Microbiota , Bases de Datos Factuales , Genoma , Genómica , Humanos , Microbiota/genética
10.
PeerJ ; 8: e10432, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362962

RESUMEN

BACKGROUND: Although Mycobacterium tuberculosis (Mtb) strains exhibit genomic homology of >99%, there is considerable variation in the phenotype. The underlying mechanisms of phenotypic heterogeneity in Mtb are not well understood but epigenetic variation is thought to contribute. At present the methylome of Mtb has not been completely characterized. METHODS: We completed methylomes of 18 Mycobacterium tuberculosis (Mtb) clinical isolates from Malawi representing the largest number of Mtb genomes to be completed in a single study using Single Molecule Real Time (SMRT) sequencing to date. RESULTS: We replicate and confirm four methylation disrupting mutations in 4 lineages of Mtb. For the first time we report complete loss of methylation courtesy of C758T (S253L) mutation in the MamB gene of Indo-oceanic lineage of Mtb. Additionally, we report a novel missense mutation G454A (G152S) in the MamA gene of the Euro-American lineage which could potentially be attributed to total disruption of methylation in the CCCAG motif but partial loss in a partner motif. Through a genomic and methylome comparative analysis with a global sample of sixteen, we report previously unknown mutations affecting the pks15/1 locus in L6 isolates. We confirm that methylation in Mtb is lineage specific although some unresolved issues still remain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...