Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Retrovirology ; 17(1): 31, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917235

RESUMEN

BACKGROUND: A protein exhibiting more than one biochemical function is termed a moonlighting protein. Glycolytic enzymes are typical moonlighting proteins, and these enzymes control the infection of various viruses. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and alpha-enolase (ENO1) are incorporated into human immunodeficiency virus type 1 (HIV-1) particles from viral producer cells and suppress viral reverse transcription independently each other. However, it remains unclear whether these proteins expressed in viral target cells affect the early phase of HIV-1 replication. RESULTS: Here we show that the GAPDH expression level in viral target cells does not affect the early phase of HIV-1 replication, but ENO1 has a capacity to suppress viral integration in viral target cells. In contrast to GAPDH, suppression of ENO1 expression by RNA interference in the target cells increased viral infectivity, but had no effect on the expression levels of the HIV-1 receptors CD4, CCR5 and CXCR4 and on the level of HIV-1 entry. Quantitative analysis of HIV-1 reverse transcription products showed that the number of copies of the late products (R/gag) and two-long-terminal-repeat circular forms of viral cDNAs did not change but that of the integrated (Alu-gag) form increased. In contrast, overexpression of ENO1 in viral target cells decreased viral infectivity owing to the low viral integration efficiency. Results of subcellular fractionation experiments suggest that the HIV integration at the nucleus was negatively regulated by ENO1 localized in the nucleus. In addition, the overexpression of ENO1 in both viral producer cells and target cells most markedly suppressed the viral replication. CONCLUSIONS: These results indicate that ENO1 in the viral target cells prevents HIV-1 integration. Importantly, ENO1, but not GAPDH, has the bifunctional inhibitory activity against HIV-1 replication. The results provide and new insights into the function of ENO1 as a moonlighting protein in HIV-1 infection.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , VIH-1/fisiología , Fosfopiruvato Hidratasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Integración Viral/fisiología , Biomarcadores de Tumor/genética , Línea Celular , Núcleo Celular/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/genética , Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Infecciones por VIH/virología , Humanos , Fosfopiruvato Hidratasa/genética , Transcripción Reversa , Proteínas Supresoras de Tumor/genética , Replicación Viral
2.
Biol Pharm Bull ; 41(4): 612-618, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29607934

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) recruits diverse cellular factors into viral particles during its morphogenesis, which apparently play roles in modulating its infectivity. In our study, proteomic techniques demonstrated that a key glycolytic protein, pyruvate kinase muscle type 2 (PKM2), is incorporated into viral particles. Here, we show that virion-packaged PKM2 significantly reduces viral infectivity by affecting the incorporation level of a cellular tRNALys3 into virions. Enhanced expression of PKM2 in HIV-1-producing cells led to a higher incorporation level of PKM2 into progeny virions without affecting the viral maturation process. Compared with the control virus, the high-level-PKM2-packaging virus showed decreased levels of both reverse transcription products and cellular tRNALys3 packaging, suggesting that the shortage of intravirion tRNALys3 suppresses reverse transcription efficiency in target cells. Interestingly, the enhanced expression of PKM2 also suppressed the virion recruitment of other nonpriming cellular tRNAs such as tRNALys1,2 and tRNAAsn, which are known to be selectively packaged into virions, without affecting the steady level of the cytoplasmic pool of those tRNAs in producer cells, suggesting that PKM2 specifically impedes the selective incorporation of tRNAs into virions. Taken together, our findings indicate that PKM2 is a vital host factor that negatively affects HIV-1 infectivity by targeting the tRNALys3-mediated initiation of reverse transcription in target cells.


Asunto(s)
VIH-1/fisiología , Piruvato Quinasa/fisiología , Células HEK293 , Humanos , Piruvato Quinasa/genética , ARN de Transferencia , Transcripción Reversa , Virión/fisiología , Ensamble de Virus , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...