Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 10(1)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861499

RESUMEN

In mammals, DNA methylation is necessary for the maintenance of genomic stability, gene expression regulation, and other processes. During malignant diseases progression, changes in both DNA methylation patterns and DNA methyltransferase (MTase) genes are observed. Human de novo MTase DNMT3A is most frequently mutated in acute myeloid leukemia (AML) with a striking prevalence of R882H mutation, which has been extensively studied. Here, we investigate the functional role of the missense mutations (S714C, R635W, R736H, R771L, P777R, and F752V) found in the catalytic domain of DNMT3A in AML patients. These were accordingly mutated in the murine Dnmt3a catalytic domain (S124C, R45W, R146H, R181L, P187R, and F162V) and in addition, one-site CpG-containing DNA substrates were used as a model system. The 3-15-fold decrease (S124C and P187R) or complete loss (F162V, R45W, and R146H) of Dnmt3a-CD methylation activity was observed. Remarkably, Pro 187 and Arg 146 are not located at or near the Dnmt3a functional motives. Regulatory protein Dnmt3L did not enhance the methylation activity of R45W, R146H, P187R, and F162V mutants. The key steps of the Dnmt3a-mediated methylation mechanism, including DNA binding and transient covalent intermediate formation, were examined. There was a complete loss of DNA-binding affinity for R45W located in the AdoMet binding region and for R146H. Dnmt3a mutants studied in vitro suggest functional impairment of DNMT3A during pathogenesis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Leucemia Mieloide Aguda/enzimología , Mutación Missense , Secuencia de Aminoácidos , Dominio Catalítico , ADN (Citosina-5-)-Metiltransferasas/química , Metilación de ADN , ADN Metiltransferasa 3A , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , S-Adenosilmetionina/metabolismo , Alineación de Secuencia
2.
PLoS One ; 13(1): e0189826, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29329300

RESUMEN

BACKGROUND: Hypermethylation is observed in the promoter regions of suppressor genes in the tumor cancer cells. Reactivation of these genes by demethylation of their promoters is a prospective strategy of the anticancer therapy. Previous experiments have shown that symmetric dimeric bisbenzimidazoles DBP(n) are able to block DNA methyltransferase activities. It was also found that DBP(n) produces a moderate effect on the activation of total gene expression in HeLa-TI population containing epigenetically repressed avian sarcoma genome. PRINCIPAL FINDINGS: It is shown that DBP(n) are able to penetrate the cellular membranes and accumulate in breast carcinoma cell MCF-7, mainly in the mitochondria and in the nucleus, excluding the nucleolus. The DBP(n) are non-toxic to the cells and have a weak overall demethylation effect on genomic DNA. DBP(n) demethylate the promoter regions of the tumor suppressor genes PTEN and RARB. DBP(n) promotes expression of the genes RARB, PTEN, CDKN2A, RUNX3, Apaf-1 and APC "silent" in the MCF-7 because of the hypermethylation of their promoter regions. Simultaneously with the demethylation of the DNA in the nucleus a significant increase in the methylation level of rRNA genes in the nucleolus was detected. Increased rDNA methylation correlated with a reduction of the rRNA amount in the cells by 20-30%. It is assumed that during DNA methyltransferase activity inhibition by the DBP(n) in the nucleus, the enzyme is sequestered in the nucleolus and provides additional methylation of the rDNA that are not shielded by DBP(n). CONCLUSIONS/SIGNIFICANCE: It is concluded that DBP (n) are able to accumulate in the nucleus (excluding the nucleolus area) and in the mitochondria of cancer cells, reducing mitochondrial potential. The DBP (n) induce the demethylation of a cancer cell's genome, including the demethylation of the promoters of tumor suppressor genes. DBP (n) significantly increase the methylation of ribosomal RNA genes in the nucleoli. Therefore the further study of these compounds is needed; it could lead to the creation of new anticancer agents.


Asunto(s)
Bencimidazoles/farmacología , Metilación de ADN/efectos de los fármacos , ARN Ribosómico/genética , Receptores de Ácido Retinoico/genética , Bencimidazoles/química , Dimerización , Células HeLa , Humanos , Células MCF-7 , Fosfohidrolasa PTEN , Especies Reactivas de Oxígeno/metabolismo
3.
Nucleosides Nucleotides Nucleic Acids ; 36(6): 392-405, 2017 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-28498075

RESUMEN

The incorporation of chemotherapeutic agent 6-thioguanine (SG) into DNA is a prerequisite for its cytotoxic action. This modification of DNA impedes the activity of enzymes involved in DNA repair and replication. Here, using hemimethylated DNA substrates we demonstrated that DNA methylation by Dnmt3a-CD is reduced if DNA is damaged by the incorporation of SG into one or two CpG sites separated by nine base pairs. An increase in the number of SG substitutions did not enhance the effect. Dnmt3a-CD binding to either of SG-containing DNA substrates was not distorted. Our results suggest that SG incorporation into DNA may influence epigenetic regulation via DNA methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN/metabolismo , Tioguanina/metabolismo , Animales , Secuencia de Bases , Islas de CpG/genética , ADN/genética , Metilación de ADN/efectos de los fármacos , ADN Metiltransferasa 3A , Cinética , Ratones , Unión Proteica , Tioguanina/farmacología
4.
Bioorg Med Chem Lett ; 25(13): 2634-8, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25987376

RESUMEN

A series of new fluorescent symmetric dimeric bisbenzimidazoles DBP(n) bearing bisbenzimidazole fragments joined by oligomethylene linkers with a central 1,4-piperazine residue were synthesized. The complex formation of DBP(n) in the DNA minor groove was demonstrated. The DBP(n) at micromolar concentrations inhibit in vitro eukaryotic DNA topoisomerase I and prokaryotic DNA methyltransferase (MTase) M.SssI. The DBP(n) were soluble well in aqueous solutions and could penetrate cell and nuclear membranes and stain DNA in live cells. The DBP(n) displayed a moderate effect on the reactivation of gene expression.


Asunto(s)
Bisbenzimidazol/análogos & derivados , ADN/química , ADN/efectos de los fármacos , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Bisbenzimidazol/síntesis química , Bisbenzimidazol/farmacología , Línea Celular , ADN/genética , ADN-Citosina Metilasas/antagonistas & inhibidores , Dimerización , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Colorantes Fluorescentes/química , Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Ratones , Microscopía Fluorescente , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/síntesis química , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología
5.
Biochim Biophys Acta ; 1794(11): 1654-62, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19654054

RESUMEN

To characterize important steps of DNA methylation by M.SssI, a prokaryotic DNA-(cytosine C5)-methyltransferase (C5-MTase) sharing the specificity of eukaryotic C5-MTases (5'-CG-3'), ten amino acids, selected on the basis of sequence alignments and a computational model, were subjected to mutational analysis. Wild-type and mutant M.SssI variants were studied to determine methylation activity, DNA binding affinity, capacity to induce base flipping, and ability to form covalent complex with a DNA substrate containing the mechanism-based inhibitor 2-pyrimidinone. Wild-type M.SssI induced strong fluorescence when bound to substrate DNA containing 2-aminopurine in place of the target cytosine, indicating flipping of the target base. Reduced fluorescence, moderate, or drastic loss of methyltransferase activity and reduced DNA binding suggest the involvement of the conserved S145 (motif IV), R232 (motif VIII, QxRxR), and T313 (variable region, conserved TL), as well as of the non-conserved Q147 in base flipping. Replacement of E186 (motif VI, ENV) and R230 (motif VIII, QxRxR) with alanine resulted in loss of methyltransferase activity without impairing DNA binding affinity. These data are consistent with the catalytic role of E186 and R230, and provide, for the first time, experimental support for the essential function of the hitherto not investigated invariant arginine of motif VIII in C5-MTases.


Asunto(s)
ADN-Citosina Metilasas/genética , ADN-Citosina Metilasas/metabolismo , Secuencia de Aminoácidos , Catálisis , Metilación de ADN , Análisis Mutacional de ADN , ADN-Citosina Metilasas/química , Datos de Secuencia Molecular , Alineación de Secuencia
6.
Biochemistry ; 45(19): 6142-59, 2006 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-16681387

RESUMEN

DNA damage caused by the binding of the tumorigen 7R,8S-diol 9S,10R-epoxide (B[a]PDE), a metabolite of bezo[a]pyrene, to guanine in CpG dinucleotide sequences could affect DNA methylation and, thus, represent a potential epigenetic mechanism of chemical carcinogenesis. In this work, we investigated the impact of stereoisomeric (+)- and (-)-trans-anti-B[a]P-N(2)-dG adducts (B(+) and B(-)) on DNA methylation by prokaryotic DNA methyltransferases M.SssI and M.HhaI. These two methyltransferases recognize CpG and GCGC sequences, respectively, and transfer a methyl group to the C5 atom of cytosine (C). A series of 18-mer unmethylated or hemimethylated oligodeoxynucleotide duplexes containing trans-anti-B[a]P-N(2)-dG adducts was generated. The B(+) or B(-) residues were introduced either 5' or 3' adjacent or opposite to the target 2'-deoxycytidines. The B[a]PDE lesions practically produced no effect on M.SssI binding to DNA but reduced M.HhaI binding by 1-2 orders of magnitude. In most cases, the benzo[a]pyrenyl residues decreased the methylation efficiency of hemimethylated and unmethylated DNA by M.SssI and M.HhaI. An absence of the methylation of hemimethylated duplexes was observed when either the (+)- or the (-)-trans-anti-B[a]P-N(2)-dG adduct was positioned 5' to the target dC. The effects observed may be related to the minor groove conformation of the bulky benzo[a]pyrenyl residue and to a perturbation of the normal contacts of the methyltransferase catalytic loop with the B[a]PDE-modified DNA. Our results indicate that a trans-anti-B[a]P-N(2)-dG lesion flanking a target dC in the CpG dinucleotide sequence on its 5'-side has a greater adverse impact on methylation than the same lesion when it is 3' adjacent or opposite to the target dC.


Asunto(s)
Benzo(a)pireno/metabolismo , Daño del ADN , Metilación de ADN , ADN-Citosina Metilasas/metabolismo , Desoxiguanosina/metabolismo , Secuencia de Bases , Benzo(a)pireno/química , Cartilla de ADN , Desoxiguanosina/química , Polarización de Fluorescencia , Cinética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA