Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 176(3): e14379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38853306

RESUMEN

Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.


Asunto(s)
Ácido Abscísico , Capsicum , Sequías , Fotosíntesis , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno , Capsicum/fisiología , Capsicum/genética , Capsicum/metabolismo , Fotosíntesis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arachis/genética , Arachis/fisiología , Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Antioxidantes/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Resistencia a la Sequía
2.
Plant Physiol Biochem ; 212: 108700, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781635

RESUMEN

Eukaryotic cells have evolved dynamic quality control pathways and recycling mechanisms for cellular homeostasis. We discuss here, the two major systems for quality control, the ubiquitin-proteasome system (UPS) and autophagy that regulate cellular protein and organelle turnover and ensure efficient nutrient management, cellular integrity and long-term wellbeing of the plant. Both the pathways rely on ubiquitination signal to identify the targets for proteasomal and autophagic degradation, yet they use distinct degradation machinery to process these cargoes. Nonetheless, both UPS and autophagy operate together as an interrelated quality control mechanism where they communicate with each other at multiple nodes to coordinate and/or compensate the recycling mechanism particularly under development and environmental cues. Here, we provide an update on the cellular machinery of autophagy and UPS, unravel the nodes of their crosstalk and particularly highlight the factors responsible for their differential deployment towards protein, macromolecular complexes and organelles.


Asunto(s)
Autofagia , Complejo de la Endopetidasa Proteasomal , Ubiquitina , Complejo de la Endopetidasa Proteasomal/metabolismo , Autofagia/fisiología , Ubiquitina/metabolismo , Ubiquitinación , Plantas/metabolismo
3.
J Genet Eng Biotechnol ; 22(2): 100380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797550

RESUMEN

An effective CRISPR/Cas9 reagent delivery system has been developed in a commercially significant crop, the chilli pepper using a construct harboring two distinct gRNAs targeting exons 14 and 15 of the Phytoene desaturase (CaPDS) gene, whose loss-of-function mutation causes a photo-bleaching phenotype and impairs the biosynthesis of carotenoids. The construct carrying two sgRNAs was observed to create visible albino phenotypes in cotyledons regenerating on a medium containing 80 mg/L kanamycin, and plants regenerated therefrom after biolistic-mediated transfer of CRISPR/Cas9 reagents into chilli pepper cells. Analysis of CRISPR/Cas9 genome-editing events, including kanamycin screening of mutants and assessing homozygosity using the T7 endonuclease assay (T7E1), revealed 62.5 % of transformed plants exhibited successful editing at the target region and displayed both albino and mosaic phenotypes. Interestingly, the sequence analysis showed that insertions and substitutions were present in all the plant lines in the targeted CaPDS region. The detected mutations were mostly 12- to 24-bp deletions that disrupted the exon-intron junction, along with base substitutions and the insertion of 1-bp at the protospacer adjacent motif (PAM) region of the target site. The reduction in essential photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoid) in knockout chilli pepper lines provided further evidence that the CaPDS gene had been functionally disrupted. In this present study, we report that the biolistic delivery of CRISPR/Cas9 reagents into chilli peppers is very effective and produces multiple mutation events in a short span of time.

4.
Theor Appl Genet ; 136(9): 195, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606708

RESUMEN

KEY MESSAGE: The male sterility system in plants has traditionally been utilized for hybrid seed production. In last three decades, genetic manipulation for male sterility has revolutionized this area of research related to hybrid seed production technology. Here, we have surveyed some of the natural cytoplasmic male sterility (CMS) systems that existed/ were developed in different crop plants for developing male sterility-fertility restoration systems used in hybrid seed production and highlighted some of the recent biotechnological advancements in the development of genetically engineered systems that occurred in this area. We have indicated the possible future directions toward the development of engineered male sterility systems. Cytoplasmic male sterility (CMS) is an important trait that is naturally prevalent in many plant species, which has been used in the development of hybrid varieties. This is associated with the use of appropriate genes for fertility restoration provided by the restorer line that restores fertility on the corresponding CMS line. The development of hybrids based on a CMS system has been demonstrated in several different crops. However, there are examples of species, which do not have usable cytoplasmic male sterility and fertility restoration systems (Cytoplasmic Genetic Male Sterility Systems-CGMS) for hybrid variety development. In such plants, it is necessary to develop usable male sterile lines through genetic engineering with the use of heterologous expression of suitable genes that control the development of male gametophyte and fertile male gamete formation. They can also be developed through gene editing using the recently developed CRISPR-Cas technology to knock out suitable genes that are responsible for the development of male gametes. The present review aims at providing an insight into the development of various technologies for successful production of hybrid varieties and is intended to provide only essential information on male sterility systems starting from naturally occurring ones to the genetically engineered systems obtained through different means.


Asunto(s)
Infertilidad Masculina , Semillas , Masculino , Humanos , Citoplasma , Semillas/genética , Fertilidad , Polen
5.
Front Plant Sci ; 14: 1135552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152162

RESUMEN

Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, VaDJI having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of Vigna aconitifolia RMO-40. VaDJI is induced by multiple stresses. In tobacco, ectopic expression of VaDJI reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher Fv/Fm ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of H2O2 and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that VaDJI overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby VaDJI positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.

6.
Biomed Res Int ; 2022: 1027288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505877

RESUMEN

Combined stress has been seen as a major threat to world agriculture production. Maize is one of the leading cereal crops of the world due to its wide spectrum of growth conditions and is moderately sensitive to salt stress. A saline soil environment is a major factor that hinders its growth and overall yield and causes an increase in the concentration of micronutrients like boron, leading to excess over the requirement of the plant. Boron toxicity combined with salinity has been reported to be a serious threat to the yield and quality of maize. The response signatures of the maize plants to the combined effect of salinity and boron stress have not been studied well. We carried out an integrative systems-level analysis of the publicly available transcriptomic data generated on tolerant maize (Lluteño maize from the Atacama Desert, Chile) landrace under combined salt and boron stress. We identified significant biological processes that are differentially regulated in combined salt and boron stress in the leaves and roots of maize, respectively. Protein-protein interaction network analysis identified important roles of aldehyde dehydrogenase (ALDH), galactinol synthase 2 (GOLS2) proteins of leaf and proteolipid membrane potential regulator (pmpm4), metallothionein lea protein group 3 (mlg3), and cold regulated 410 (COR410) proteins of root in salt tolerance and regulating boron toxicity in maize. Identification of transcription factors coupled with regulatory network analysis using machine learning approach identified a few heat shock factors (HSFs) and NAC (NAM (no apical meristem, Petunia), ATAF1-2 (Arabidopsis thaliana activating factor), and CUC2 (cup-shaped cotyledon, Arabidopsis)) family transcription factors (TFs) to play crucial roles in salt tolerance, maintaining reactive oxygen species (ROS) levels and minimizing oxidative damage to the cells. These findings will provide new ways to design targeted functional validation experiments for developing multistress-resistant maize crops.


Asunto(s)
Arabidopsis , Boro , Boro/toxicidad , Productos Agrícolas , Salinidad , Biología de Sistemas , Factores de Transcripción/genética , Zea mays/genética
7.
Theor Appl Genet ; 134(7): 2253-2272, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33821294

RESUMEN

KEY MESSAGE: XPB2 and SEN1 helicases were identified through activation tagging as potential candidate genes in rice for inducing high water-use efficiency (WUE) and maintaining sustainable yield under drought stress. As a follow-up on the high-water-use-efficiency screening and physiological analyses of the activation-tagged gain-of-function mutant lines that were developed in an indica rice variety, BPT-5204 (Moin et al. in Plant Cell Environ 39:2440-2459, 2016a, https://doi.org/10.1111/pce.12796 ), we have identified two gain-of-function mutant lines (XM3 and SM4), which evidenced the activation of two helicases, ATP-dependent DNA helicase (XPB2) and RNA helicase (SEN1), respectively. We performed the transcript profiling of XPB2 and SEN1 upon exposure to various stress conditions and found their significant upregulation, particularly in ABA and PEG treatments. Extensive morpho-physiological and biochemical analyses based on 24 metrics were performed under dehydration stress (PEG) and phytohormone (ABA) treatments for the wild-type and the two mutant lines. Principal component analysis (PCA) performed on the dataset captured 72.73% of the cumulative variance using the parameters influencing the first two principal components. The tagged mutants exhibited reduced leaf wilting, improved revival efficiency, constant amylose:amylopectin ratio, high chlorophyll and proline contents, profuse tillering, high quantum efficiency and yield-related traits with respect to their controls. These observations were further validated under greenhouse conditions by the periodic withdrawal of water at the pot level. Germination of the seeds of these mutant lines indicated their insensitivity to high ABA concentration. The associated upregulation of stress-specific genes further suggests that their drought tolerance might be because of the coordinated expression of several stress-responsive genes in these two mutants. Altogether, our results provided a firm basis for SEN1 and XPB2 as potential candidates for manipulation of drought tolerance and improving rice performance and yield under limited water conditions.


Asunto(s)
ADN Helicasas/genética , Sequías , Oryza/genética , Proteínas de Plantas/genética , ARN Helicasas/genética , Mutación con Ganancia de Función , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Estrés Fisiológico
8.
Gene ; 789: 145670, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33892070

RESUMEN

We have functionally characterized the RPL6, a Ribosomal Protein Large subunit gene for salt stress tolerance in rice. The overexpression of RPL6 resulted in tolerance to moderate (150 mM) to high (200 mM) levels of salt (NaCl). The transgenic rice plants expressing RPL6 constitutively showed better phenotypic and physiological responses with high quantum efficiency, accumulation of higher chlorophyll and proline contents, and an overall increase in seed yield compared with the wild type in salt stress treatments. An iTRAQ-based comparative proteomic analysis revealed the high expression of about 333 proteins among the 4378 DAPs in a selected overexpression line of RPL6 treated with 200 mM of NaCl. The functional analysis showed that these highly accumulated proteins (HAPs) are involved in photosynthesis, ribosome and chloroplast biogenesis, ion transportation, transcription and translation regulation, phytohormone and secondary metabolite signal transduction. An in silico network analysis of HAPs predicted that RPL6 binds with translation-related proteins and helicases, which coordinately affect the activities of a comprehensive signaling network, thereby inducing tolerance and promoting growth and productivity in response to salt stress. Our overall findings identified a novel candidate, RPL6, whose characterization contributed to the existing knowledge on the complexity of salt tolerance mechanism in plants.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Proteínas Ribosómicas/genética , Tolerancia a la Sal/genética , Clorofila/genética , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/genética , Fotosíntesis/genética , Proteómica/métodos , Estrés Salino/genética , Plantones/genética , Transducción de Señal/genética
9.
Sci Rep ; 10(1): 418, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941979

RESUMEN

CBL interacting protein kinases play important roles in adaptation to stress conditions. In the present study, we isolated a CBL-interacting protein kinase homolog (AdCIPK5) from a wild peanut (Arachis diogoi) with similarity to AtCIPK5 of Arabidopsis. Expression analyses in leaves of the wild peanut showed AdCIPK5 induction by exogenous signaling molecules including salicylic acid, abscisic acid and ethylene or abiotic stress factors like salt, PEG and sorbitol. The recombinant AdCIPK5-GFP protein was found to be localized to the nucleus, plasma membrane and cytoplasm. We overexpressed AdCIPK5 in tobacco plants and checked their level of tolerance to biotic and abiotic stresses. While wild type and transgenic plants displayed no significant differences to the treatment with the phytopathogen, Phytophthora parasitica pv nicotianae, the expression of AdCIPK5 increased salt and osmotic tolerance in transgenic plants. Analysis of different physiological parameters revealed that the transgenic plants maintained higher chlorophyll content and catalase activity with lower levels of H2O2 and MDA content during the abiotic stress conditions. AdCIPK5 overexpression also contributed to the maintenance of a higher the K+/Na+ ratio under salt stress. The enhanced tolerance of transgenic plants was associated with elevated expression of stress-related marker genes; NtERD10C, NtERD10D, NtNCED1, NtSus1, NtCAT and NtSOS1. Taken together, these results indicate that AdCIPK5 is a positive regulator of salt and osmotic stress tolerance.


Asunto(s)
Nicotiana/fisiología , Presión Osmótica , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Tolerancia a la Sal , Estrés Fisiológico , Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Phytophthora/fisiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Cloruro de Sodio/farmacología , Nicotiana/efectos de los fármacos
10.
Mol Biol Rep ; 46(6): 5941-5953, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31401779

RESUMEN

Sunflower (Helianthus annuus. L) is one of the principal oil seed crops affected by the salinity stress, which limits the oil content and crop yield of sunflower plants. The acclimatization of plants to abiotic stresses such as salinity tolerance is mainly mediated by the vacuolar Na+/H+ antiporters (NHX) by tagging Na+ into vacuoles from the cytosol. We show here that the over-expression of wheat TaNHX2 gene in transgenic sunflower conferred improved salinity stress tolerance and growth performance. Transgenic sunflower plants were produced by infecting the embryonic axis ex-plants with Agrobacterium tumefaciens strain EHA105 containing a pBin438-TaNHX2 binary vector that carried a wheat antiporter (TaNHX2) gene under the control of a double CaMV 35S promoter with NPT II gene as a selectable marker. PCR analysis of T0 and T1 transgenic plants confirmed the integration of TaNHX2 in sunflower genome. Stable integration and expression of TaNHX2 in sunflower genome was further verified by Southern hybridization and semi-quantitative RT-PCR analyses. As compared to the non-transformed plants, TaNHX2 expressing transgenic plants showed better growth performance and accumulated higher Na+, K+ contents in leaves and roots under salt stress (200 mM NaCl). Transgenic sunflower plants displayed improved protection against cell damage exhibiting stable relative water content, chlorophyll content, increased proline accumulation and improved reactive oxygen species (ROS) scavenging because of higher activities of the antioxidant enzymes like superoxide dismutase and ascorbate peroxidase, along with decreased production of hydrogen peroxide, free oxygen radical and malondialdehyde (MDA) under salt stress (200 mM NaCl). Taken together, our findings suggest that TaNHX2 expression in sunflower plants contributed towards improving growth performance under sodium chloride stress.


Asunto(s)
Antiportadores/metabolismo , Helianthus/genética , Tolerancia a la Sal/genética , Antiportadores/genética , Clorofila/metabolismo , Productos Agrícolas/genética , Expresión Génica Ectópica , Germinación , Helianthus/metabolismo , Hojas de la Planta , Proteínas de Plantas/genética , Raíces de Plantas , Plantas Modificadas Genéticamente/genética , Poaceae/genética , Salinidad , Semillas , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Estrés Fisiológico , Triticum/genética , Triticum/metabolismo , Vacuolas/metabolismo
11.
Sci Rep ; 9(1): 7012, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31065035

RESUMEN

Aldehyde dehydrogenase (ALDH) carries out oxidation of toxic aldehydes using NAD+/NADP+ as cofactors. In the present study, we performed a genome-wide identification and expression analysis of genes in the ALDH gene family in Brassica rapa. A total of 23 ALDH genes in the superfamily have been identified according to the classification of ALDH Gene Nomenclature Committee (AGNC). They were distributed unevenly across all 10 chromosomes. All the 23 Brassica rapa ALDH (BrALDH) genes exhibited varied expression patterns during treatments with abiotic stress inducers and hormonal treatments. The relative expression profiles of ALDH genes in B. rapa showed that they are predominantly expressed in leaves and stem suggesting their function in the vegetative tissues. BrALDH7B2 showed a strong response to abiotic stress and hormonal treatments as compared to other ALDH genes; therefore, it was overexpressed in heterologous hosts, E. coli and yeast to study its possible function under abiotic stress conditions. Over-expression of BrALDH7B2 in heterologous systems, E. coli and yeast cells conferred significant tolerance to abiotic stress treatments. Results from this work demonstrate that BrALDH genes are a promising and untapped genetic resource for crop improvement and could be deployed further in the development of drought and salinity tolerance in B. rapa and other economically important crops.


Asunto(s)
Aldehído Deshidrogenasa/genética , Brassica rapa/enzimología , Escherichia coli/crecimiento & desarrollo , Secuenciación Completa del Genoma/métodos , Levaduras/crecimiento & desarrollo , Aldehído Deshidrogenasa/metabolismo , Brassica rapa/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Estrés Fisiológico , Levaduras/genética
12.
Funct Integr Genomics ; 19(5): 703-714, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30968209

RESUMEN

The development of male sterile plants is a prerequisite to developing hybrid varieties to harness the benefits of hybrid vigor in crops and enhancing crop productivity for sustainable agriculture. In plants, cysteine proteases have been known for their multifaceted roles during programmed cell death, and in ubiquitin- and proteasome-mediated proteolysis. Here, we showed that Arachis diogoi cysteine protease (AdCP) expressed under the TA-29 promoter induced complete male sterility in Indian mustard, Brassica juncea. The herbicide resistance gene bar was used for the selection of transgenic plants. Mustard transgenic plants exhibited male sterile phenotype and failed to produce functional pollen grains. Irregularly shaped aborted pollen grains with groove-like structures were observed in male sterile plants during scanning electron microscopy analysis. The T1 progeny plants obtained from the seed of primary transgenic male sterile plants crossed with the wild-type plants exhibited segregation of the progeny into male sterile and fertile plants with normal seed development. Further, male sterile plants exhibited higher transcript levels of AdCP in anther tissues, which is consistent with its expression under the tapetum-specific promoter. Our results clearly suggest that the targeted expression of AdCP provides a potential tool for developing male sterile lines in crop plants by the malfunction of tapetal cells leading to male sterility as shown earlier in tobacco transgenic plants (Shukla et al. 2014, Funct Integr Genomics 14:307-317).


Asunto(s)
Arachis/enzimología , Proteasas de Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza/crecimiento & desarrollo , Infertilidad Vegetal , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Polen/metabolismo , Proteasas de Cisteína/genética , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polen/genética , Regiones Promotoras Genéticas
13.
Funct Integr Genomics ; 19(4): 541-554, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30673892

RESUMEN

Brinjal or eggplant (Solanum melongena L.) is an important solanaceous edible crop, and salt stress adversely affects its growth, development, and overall productivity. To cope with excess salinity, vacuolar Na+/H+ antiporters provide the best mechanism for ionic homeostasis in plants under salt stress. We generated transgenic eggplants by introducing wheat TaNHX2 gene that encodes a vacuolar Na+/H+ antiporter in to the eggplant genome via Agrobacterium-mediated transformation using pBin438 vector that harbors double35S:TaNHX2 to confer salinity tolerance. Polymerase chain reaction and southern hybridization confirmed the presence and integration of TaNHX2 gene in T1 transgenic plants. Southern positive transgenic eggplants showed varied levels of TaNHX2 transcripts as evident by RT-PCR and qRT-PCR. Stress-inducible expression of TaNHX2 significantly improved growth performance and Na+ and K+ contents from leaf and roots tissues of T2 transgenic eggplants under salt stress, compared to non-transformed plants. Furthermore, T2 transgenic eggplants displayed the stable leaf relative water content and chlorophyll content, proline accumulation, improved photosynthetic efficiency, transpiration rate, and stomatal conductivity than the non-transformed plants under salinity stress (200 mM NaCl). Data showed that the T2 transgenic lines revealed that reduction in MDA content, hydrogen peroxide, and oxygen radical production associated with the significant increase of antioxidant enzyme activity in transgenic eggplants than non-transformed plants under salt stress (200 mM NaCl). This study suggested that the TaNHX2 gene plays an important regulatory role in conferring salinity tolerance of transgenic eggplant and thus may serve as a useful candidate gene for improving salinity tolerance in other vegetable crops.


Asunto(s)
Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Tolerancia a la Sal , Intercambiadores de Sodio-Hidrógeno/genética , Solanum/genética , Triticum/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Solanum/metabolismo , Solanum/fisiología
14.
Plant Biol (Stuttg) ; 21(2): 190-205, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30411830

RESUMEN

The target of rapamycin (TOR) protein regulates growth and development in photosynthetic and non-photosynthetic eukaryotes. Although the TOR regulatory networks are involved in nutrient and energy signalling, and transcriptional and translational control of multiple signalling pathways, the molecular mechanism of TOR regulation of plant abiotic stress responses is still unclear. The TOR-mediated transcriptional regulation of genes encoding ribosomal proteins (RP) is a necessity under stress conditions for balanced growth and productivity in plants. The activation of SnRKs (sucrose non-fermenting-related kinases) and the inactivation of TOR signalling in abiotic stresses is in line with the accumulation of ABA and transcriptional activation of stress responsive genes. Autophagy is induced under abiotic stress conditions, which results in degradation of proteins and the release of amino acids, which might possibly induce phosphorylation of TOR and, hence, its activation. TOR signalling also has a role in regulating ABA biosynthesis for transcriptional regulation of stress-related genes. The switch between activation and inactivation of TOR by its phosphorylation and de-phosphorylation maintains balanced growth in response to stresses. In the present review, we discuss the important signalling pathways that are regulated by TOR and try to assess the relationship between TOR signalling and tolerance to abiotic stresses in plants. The review also discusses possible cross-talk between TOR and RP genes in response to abiotic stresses.


Asunto(s)
Producción de Cultivos , Fenómenos Fisiológicos de las Plantas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Plantas/metabolismo
15.
Funct Integr Genomics ; 18(5): 569-579, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29744759

RESUMEN

Annexins are multifunctional proteins with roles in plant development and alleviation of stress tolerance. In the present communication, we report on the effect of heterologous expression of Brassica juncea annexin, AnnBj2 in tobacco. Transgenic tobacco plants expressing AnnBj2 exhibited salt-tolerant and abscisic acid (ABA)-insensitive phenotype at the seedling stage. Biochemical analysis showed that AnnBj2 transgenic plants retained higher chlorophyll and proline content, and lower malondialdehyde (MDA) levels compared to the null line under salt stress. They exhibited better water retention capacity compared to the null segregant (NS) line. AnnBj2 overexpression altered the transcript levels of several stress-related marker genes involved in reactive oxygen species (ROS) scavenging and abiotic stress signaling. Taken together, these results suggest a positive role for AnnBj2 in salt stress response upon heterologous expression in tobacco.


Asunto(s)
Ácido Abscísico/farmacología , Anexinas/genética , Brassica/genética , Nicotiana/genética , Proteínas de Plantas/genética , Tolerancia a la Sal , Anexinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantones/efectos de los fármacos , Plantones/genética , Nicotiana/efectos de los fármacos
16.
Plant Sci ; 272: 62-74, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29807607

RESUMEN

A gene encoding a serine-rich DnaJIII protein called AdDjSKI that has a 4Fe-4S cluster domain was found to be differentially upregulated in the wild peanut, Arachis diogoi in its resistance responses against the late leaf spot causing fungal pathogen Phaeoisariopsis personata when compared with the cultivated peanut, Arachis hypogaea. AdDjSKI is induced in multiple stress conditions in A. diogoi. Recombinant E. coli cells expressing AdDjSKI showed better growth kinetics when compared with vector control cells under salinity, osmotic, acidic and alkaline stress conditions. Overexpression of this type three J-protein potentiates not only abiotic stress tolerance in Nicotiana tabacum var. Samsun, but also enhances its disease resistance against the phytopathogenic fungi Phytophthora parasitica pv nicotianae and Sclerotinia sclerotiorum. In the present study we show transcriptional upregulation of APX, Mn-SOD and HSP70 under heat stress and increased transcripts of PR genes in response to fungal infection. This transmembrane-domain-containing J protein displays punctate localization in chloroplasts. AdDjSKI appears to ensure proper folding of proteins associated with the photosynthetic machinery under stress.


Asunto(s)
Arachis/fisiología , Escherichia coli/fisiología , Nicotiana/fisiología , Proteínas de Plantas/fisiología , Estrés Fisiológico/fisiología , Arachis/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Escherichia coli/genética , Organismos Modificados Genéticamente , Presión Osmótica/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Estrés Fisiológico/genética , Nicotiana/genética
17.
Brief Funct Genomics ; 17(5): 339-351, 2018 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29579147

RESUMEN

One of the important and direct ways of investigating the function of a gene is to characterize the phenotypic consequences associated with loss or gain-of-function of the corresponding gene. These mutagenesis strategies have been successfully deployed in Arabidopsis, and subsequently extended to crop species including rice. Researchers have made vast advancements in the area of rice genomics and functional genomics, as it is a diploid plant with a relatively smaller genome size unlike other cereals. The advent of rice genome research and the annotation of high-quality genome sequencing along with the developments in databases and computer searches have enabled the functional characterization of unknown genes in rice. Further, with the improvements in the efficiency of regeneration and transformation protocols, it has now become feasible to produce sizable mutant populations in indica rice varieties also. In this review, various mutagenesis methods, the current status of the mutant resources, limitations and strengths of insertional mutagenesis approaches and also results obtained with suitable screens for stress tolerance in rice are discussed. In addition, targeted genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or Cas9/single-guide RNA system and its potential applications in generating transgene-free rice plants through genome engineering as an efficient alternative to classical transgenic technology are also discussed.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma de Planta , Genómica , Oryza/genética , ARN Guía de Kinetoplastida/metabolismo
18.
Plant Sci ; 265: 12-28, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29223333

RESUMEN

Annexins belong to a plasma membrane binding (in a calcium dependent manner), multi-gene family of proteins, which play ameliorating roles in biotic and abiotic stresses. The expression of annexin AnnBj2 of Indian mustard is tissue specific with higher expression in roots and under treatments with sodium chloride and abscisic acid (ABA) at seedling stage. The effect of constitutive expression of AnnBj2 in mustard was analyzed in detail. AnnBj2 OE (over expression) plants exhibited insensitivity to ABA, glucose and sodium chloride. The insensitivity/tolerance of the transgenic plants was associated with enhanced total chlorophylls, relative water content, proline, calcium and potassium with reduced thiobarbituric acid reactive substances and sodium ion accumulation. The altered ABA insensitivity of AnnBj2 OE lines is linked to downregulation of ABI4 and ABI5 transcription factors and upregulation of ABA catabolic gene CYP707A2. Furthermore, we found that overexpression of AnnBj2 upregulated the expression of ABA-dependent RAB18 and ABA-independent DREB2B stress marker genes suggesting that the tolerance phenotype exhibited by AnnBj2 OE lines is probably controlled by both ABA-dependent and -independent mechanisms.


Asunto(s)
Ácido Abscísico/metabolismo , Anexinas/genética , Glucosa/metabolismo , Planta de la Mostaza/fisiología , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Anexinas/metabolismo , Planta de la Mostaza/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Plantones/genética , Plantones/fisiología
19.
Front Chem ; 5: 97, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29184886

RESUMEN

Our previous findings on the screening of a large-pool of activation tagged rice plants grown under limited water conditions revealed the activation of Ribosomal Protein Large (RPL) subunit genes, RPL6 and RPL23A in two mutants that exhibited high water-use efficiency (WUE) with the genes getting activated by the integrated 4x enhancers (Moin et al., 2016a). In continuation of these findings, we have comprehensively characterized the Ribosomal Protein (RP) gene family including both small (RPS) and large (RPL) subunits, which have been identified to be encoded by at least 70 representative genes; RP-genes exist as multiple expressed copies with high nucleotide and amino acid sequence similarity. The differential expression of all the representative genes in rice was performed under limited water and drought conditions at progressive time intervals in the present study. More than 50% of the RP genes were upregulated in both shoot and root tissues. Some of them exhibited an overlap in upregulation under both the treatments indicating that they might have a common role in inducing tolerance under limited water and drought conditions. Among the genes that became significantly upregulated in both the tissues and under both the treatments are RPL6, 7, 23A, 24, and 31 and RPS4, 10 and 18a. To further validate the role of RP genes in WUE and inducing tolerance to other stresses, we have raised transgenic plants overexpressing RPL23A in rice. The high expression lines of RPL23A exhibited low Δ13C, increased quantum efficiency along with suitable growth and yield parameters with respect to negative control under the conditions of limited water availability. The constitutive expression of RPL23A was also associated with transcriptional upregulation of many other RPL and RPS genes. The seedlings of RPL23A high expression lines also showed a significant increase in fresh weight, root length, proline and chlorophyll contents under simulated drought and salt stresses. Taken together, our findings provide a secure basis for the RPL gene family expression as a potential resource for exploring abiotic stress tolerant properties in rice.

20.
Front Plant Sci ; 8: 1553, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966624

RESUMEN

Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...