Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(18): 12337-12348, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38633502

RESUMEN

Photocatalysis is a promising treatment method to remove pollutants from water. TiO2-P25 is a commercially available model photocatalyst, which very efficiently degrades organic pollutants under UVA light exposure. However, the collection and the recovery of TiO2-P25 from cleaned water poses significant difficulties, severely limiting its usability. To address this challenge, we have prepared a sintered mixture of TiO2-P25 nanomaterials and magnetic CuFe2O4-Fe2O3 nanocomposites. The mixture material was shown to contain spinel ferrite, hematite and maghemite structures, copper predominantly in Cu2+ and iron predominantly in Fe3+ state. The CuFe2O4-Fe2O3 and TiO2-P25 mixture demonstrated magnetic collectability from processed water and photocatalytic activity, which was evidenced through the successful photodegradation of the herbicide 2,4-D. Our findings suggest that the sintered mixture of CuFe2O4-Fe2O3 and TiO2-P25 holds a promise for improving photocatalytic water treatment, with the potential to overcome current photocatalyst recovery issues.

2.
FEMS Microbes ; 5: xtad022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213394

RESUMEN

Antimicrobial surface materials potentially prevent pathogen transfer from contaminated surfaces. Efficacy of such surfaces is assessed by standard methods using wet exposure conditions known to overestimate antimicrobial activity compared to dry exposure. Some dry test formats have been proposed but semi-dry exposure scenarios e.g. oral spray or water droplets exposed to ambient environment, are less studied. We aimed to determine the impact of environmental test conditions on antibacterial activity against the model species Escherichia coli and Staphylococcus aureus. Surfaces based on copper, silver, and quaternary ammonium with known or claimed antimicrobial properties were tested in conditions mimicking microdroplet spray or larger water droplets exposed to variable relative air humidity in the presence or absence of organic soiling. All the environmental parameters critically affected antibacterial activity of the tested surfaces from no effect in high-organic dry conditions to higher effect in low-organic humid conditions but not reaching the effect size demonstrated in the ISO 22169 wet format. Copper was the most efficient antibacterial surface followed by silver and quaternary ammonium based coating. Antimicrobial testing of surfaces using small droplet contamination in application-relevant conditions could therefore be considered as one of the worst-case exposure scenarios relevant to dry use surfaces.

3.
Heliyon ; 9(9): e20067, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810009

RESUMEN

Due to the growing interest towards reducing the number of potentially infectious agents on critical high-touch surfaces, the popularity of antimicrobially and antivirally active surfaces, including textiles, has increased. The goal of this study was to create antiviral textiles by spray-depositing three different nanomaterials, two types of CeO2 nanoparticles and quaternary ammonium surfactant CTAB loaded SiO2 nanocontainers, onto the surface of a knitted polyester textile and assess their antiviral activity against two coronaviruses, porcine transmissible gastroenteritis virus (TGEV) and severe acute respiratory syndrome virus (SARS CoV-2). Antiviral testing was carried out in small droplets in semi-dry conditions and in the presence of organic soiling, to mimic aerosol deposition of viruses onto the textiles. In such conditions, SARS CoV-2 stayed infectious at least for 24 h and TGEV infected cells even after 72h of semi-dry deposition suggesting that textiles exhibiting sufficient antiviral activity before or at 24 h, can be considered promising. The antiviral efficacy of nanomaterial-deposited textiles was compared with the activity of the same nanomaterials in colloidal form and with positive control textiles loaded with copper nitrate and CTAB. Our results indicated that after deposition onto the textile, CeO2 nanoparticles lost most of their antiviral activity, but antiviral efficacy of CTAB-loaded SiO2 nanocontainers was retained also after deposition. Copper nitrate deposited textile that was used as a positive control, showed relatively high antiviral activity as expected. However, as copper was effectively washed away from the textile already during 1 h, the use of copper for creating antiviral textiles would be impractical. In summary, our results indicated that antiviral activity of textiles cannot be predicted from antiviral efficacy of the deposited compounds in colloid and attention should be paid on prolonged efficacy of antivirally coated textiles.

4.
Materials (Basel) ; 16(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37512381

RESUMEN

Rechargeable zinc-air batteries (RZAB) have gained significant attention as potential energy storage devices due to their high energy density, cost-effectiveness, and to the fact that they are environmentally safe. However, the practical implementation of RZABs has been impeded by challenges such as sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), including poor cyclability. Herein, we report the preparation of cobalt- and nitrogen-doped porous carbon derived from phloroglucinol-formaldehyde polymer networks with 2-methyl imidazole and cobalt phthalocyanine as precursors for nitrogen and cobalt. The CoN-PC-2 catalyst prepared in this study exhibits commendable electrocatalytic activity for both ORR and OER, evidenced by a half-wave potential of 0.81 V and Ej=10 of 1.70 V. Moreover, the catalyst demonstrates outstanding performance in zinc-air batteries, achieving a peak power density of 158 mW cm-2 and displaying excellent stability during charge-discharge cycles. The findings from this study aim to provide valuable insights and guidelines for further research and the development of hierarchical micro-mesoporous carbon materials from polymer networks, facilitating their potential commercialisation and widespread deployment in energy storage applications.

5.
Materials (Basel) ; 16(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37444939

RESUMEN

The goal of achieving the large-scale production of zero-emission vehicles by 2035 will create high expectations for electric vehicle (EV) development and availability. Currently, a major problem is the lack of suitable batteries and battery materials in large quantities. The rechargeable zinc-air battery (RZAB) is a promising energy-storage technology for EVs due to the environmental friendliness and low production cost. Herein, iron, cobalt, and nickel phthalocyanine tri-doped electrospun carbon nanofibre-based (FeCoNi-CNF) catalyst material is presented as an affordable and promising alternative to Pt-group metal (PGM)-based catalyst. The FeCoNi-CNF-coated glassy carbon electrode showed an oxygen reduction reaction/oxygen evolution reaction reversibility of 0.89 V in 0.1 M KOH solution. In RZAB, the maximum discharge power density (Pmax) of 120 mW cm-2 was obtained with FeCoNi-CNF, which is 86% of the Pmax measured with the PGM-based catalyst. Furthermore, during the RZAB charge-discharge cycling, the FeCoNi-CNF air electrode was found to be superior to the commercial PGM electrocatalyst in terms of operational durability and at least two times higher total life-time.

6.
Pharmaceutics ; 15(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36839718

RESUMEN

Cell-penetrating peptides (CPPs) are highly promising transfection agents that can deliver various compounds into living cells, including nucleic acids (NAs). Positively charged CPPs can form non-covalent complexes with negatively charged NAs, enabling simple and time-efficient nanoparticle preparation. However, as CPPs have substantially different chemical and physical properties, their complexation with the cargo and characteristics of the resulting nanoparticles largely depends on the properties of the surrounding environment, i.e., solution. Here, we show that the solvent used for the initial dissolving of a CPP determines the properties of the resulting CPP particles formed in an aqueous solution, including the activity and toxicity of the CPP-NA complexes. Using different biophysical methods such as dynamic light scattering (DLS), atomic force microscopy (AFM), transmission and scanning electron microscopy (TEM and SEM), we show that PepFect14 (PF14), a cationic amphipathic CPP, forms spherical particles of uniform size when dissolved in organic solvents, such as ethanol and DMSO. Water-dissolved PF14, however, tends to form micelles and non-uniform aggregates. When dissolved in organic solvents, PF14 retains its α-helical conformation and biological activity in cell culture conditions without any increase in cytotoxicity. Altogether, our results indicate that by using a solvent that matches the chemical nature of the CPP, the properties of the peptide-cargo particles can be tuned in the desired way. This can be of critical importance for in vivo applications, where CPP particles that are too large, non-uniform, or prone to aggregation may induce severe consequences.

7.
Sci Rep ; 12(1): 18746, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335167

RESUMEN

Nanomaterials are prospective candidates for the elimination of viruses due to their multimodal mechanisms of action. Here, we tested the antiviral potential of a largely unexplored nanoparticle of cerium dioxide (CeO2). Two nano-CeO2 with opposing surface charge, (+) and (-), were assessed for their capability to decrease the plaque forming units (PFU) of four enveloped and two non-enveloped viruses during 1-h exposure. Statistically significant antiviral activity towards enveloped coronavirus SARS-CoV-2 and influenza virus was registered already at 20 mg Ce/l. For other two enveloped viruses, transmissible gastroenteritis virus and bacteriophage φ6, antiviral activity was evidenced at 200 mg Ce/l. As expected, the sensitivity of non-enveloped viruses towards nano-CeO2 was significantly lower. EMCV picornavirus showed no decrease in PFU until the highest tested concentration, 2000 mg Ce/l and MS2 bacteriophage showed slight non-monotonic response to high concentrations of nano-CeO2(-). Parallel testing of antiviral activity of Ce3+ ions and SiO2 nanoparticles allows to conclude that nano-CeO2 activity was neither due to released Ce-ions nor nonspecific effects of nanoparticulates. Moreover, we evidenced higher antiviral efficacy of nano-CeO2 compared with Ag nanoparticles. This result along with low antibacterial activity and non-existent cytotoxicity of nano-CeO2 allow us to propose CeO2 nanoparticles for specific antiviral applications.


Asunto(s)
COVID-19 , Cerio , Nanopartículas del Metal , Nanopartículas , Humanos , Dióxido de Silicio , Antivirales/farmacología , Plata/farmacología , SARS-CoV-2 , Cerio/farmacología , Nanopartículas/toxicidad
8.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34947733

RESUMEN

In the context of healthcare-acquired infections, microbial cross-contamination and the spread of antibiotic resistance, additional passive measures to prevent pathogen carryover are urgently needed. Antimicrobial high-touch surfaces that kill microbes on contact or prevent their adhesion could be considered to mitigate the spread. Here, we demonstrate that photocatalytic nano-ZnO- and nano-ZnO/Ag-based antibacterial surfaces with efficacy of at least a 2.7-log reduction in Escherichia coli and Staphylococcus aureus viability in 2 h can be produced by simple measures using a commercial acrylic topcoat for wood surfaces. We characterize the surfaces taking into account cyclic wear and variable environmental conditions. The light-induced antibacterial and photocatalytic activities of the surfaces are enhanced by short-term cyclic wear, indicating their potential for prolonged effectivity in long-term use. As the produced surfaces are generally more effective at higher relative air humidity and silver-containing surfaces lost their contact-killing properties in dry conditions, it is important to critically evaluate the end-use conditions of materials and surfaces to be tested and select application-appropriate methods for their efficacy assessment.

9.
Pharmaceutics ; 13(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834157

RESUMEN

The hydration of phospholipids, electrospun into polymeric nanofibers and used as templates for liposome formation, offers pharmaceutical advantages as it avoids the storage of liposomes as aqueous dispersions. The objective of the present study was to electrospin and characterize amphiphilic nanofibers as templates for the preparation of antibiotic-loaded liposomes and compare this method with the conventional film-hydration method followed by extrusion. The comparison was based on particle size, encapsulation efficiency and drug-release behavior. Chloramphenicol (CAM) was used at different concentrations as a model antibacterial drug. Phosphatidylcoline (PC) with polyvinylpyrrolidone (PVP), using ethanol as a solvent, was found to be successful in fabricating the amphiphilic composite drug-loaded nanofibers as well as liposomes with both methods. The characterization of the nanofiber templates revealed that fiber diameter did not affect the liposome size. According to the optical microscopy results, the immediate hydration of phospholipids deposited on the amphiphilic nanofibers occurred within a few seconds, resulting in the formation of liposomes in water dispersions. The liposomes appeared to aggregate more readily in the concentrated than in the diluted solutions. The drug encapsulation efficiency for the fiber-hydrated liposomes varied between 14.9 and 28.1% and, for film-hydrated liposomes, between 22.0 and 77.1%, depending on the CAM concentrations and additional extrusion steps. The nanofiber hydration method was faster, as less steps were required for the in-situ liposome preparation than in the film-hydration method. The liposomes obtained using nanofiber hydration were smaller and more homogeneous than the conventional liposomes, but less drug was encapsulated.

10.
ACS Appl Mater Interfaces ; 13(35): 41507-41516, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34428020

RESUMEN

Non-precious-metal catalysts are promising alternatives for Pt-based cathode materials in low-temperature fuel cells, which is of great environmental importance. Here, we have investigated the bifunctional electrocatalytic activity toward the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) of mixed metal (FeNi; FeMn; FeCo) phthalocyanine-modified multiwalled carbon nanotubes (MWCNTs) prepared by a simple pyrolysis method. Among the bimetallic catalysts containing nitrogen derived from corresponding metal phthalocyanines, we report the excellent ORR activity of FeCoN-MWCNT and FeMnN-MWCNT catalysts with the ORR onset potential of 0.93 V and FeNiN-MWCNT catalyst for the OER having EOER = 1.58 V at 10 mA cm-2. The surface morphology, structure, and elemental composition of the prepared catalysts were examined with scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The FeCoN-MWCNT and FeMnN-MWCNT catalysts were prepared as cathodes and tested in anion-exchange membrane fuel cells (AEMFCs). Both catalysts displayed remarkable AEMFC performance with a peak power density as high as 692 mW cm-2 for FeCoN-MWCNT.

11.
Mar Pollut Bull ; 168: 112417, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33940374

RESUMEN

Microplastic (MPL) contamination in the marine environment is extensively studied yet little is known about the extent of MPL abundance in seagrass beds. The aim of this study was to evaluate MPL accumulation in coastal seagrass (Zostera marina) beds in the Baltic Sea, Estonia. Surface water was sampled by pumping using 40 µm plankton net, and sediments by trowel. MPL was extracted with NaCl, identified by microscopy and ATR-FTIR on selected samples. Surface water in the seagrass beds had 0.04-1.2 (median 0.14) MPL/L, similar to other areas of the Baltic Sea. Sediments had 0-1817 (median 208) MPL/kg (dwt), much higher than previously recorded from adjacent unvegetated and offshore sediments, thereby suggesting a strong ability of the sediments in seagrass beds to retain MPL. Of identified MPL, blue fibres were dominant in both the sampled media. Sediment characterization showed a correlation between MPL counts with poorly sorted sediments.


Asunto(s)
Contaminantes Químicos del Agua , Zosteraceae , Monitoreo del Ambiente , Estonia , Sedimentos Geológicos , Microplásticos , Plásticos
12.
Polymers (Basel) ; 13(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801531

RESUMEN

The effects of microplastics (MP) are extensively studied, yet hazard data from long-term exposure studies are scarce. Moreover, for sustainable circular use in the future, knowledge on the biological impact of recycled plastics is essential. The aim of this study was to provide long-term toxicity data of virgin vs recycled (mechanical recycling) low density polyethylene (LDPE) for two commonly used ecotoxicity models, the freshwater crustacean Daphnia magna and the terrestrial crustacean Porcellio scaber. LDPE MP was tested as fragments of 39.8 ± 8.82 µm (virgin) and 205 ± 144 µm (recycled) at chronic exposure levels of 1-100 mg LDPE/L (D. magna) and 0.2-15 g LDPE/kg soil (P. scaber). Mortality, reproduction, body length, total lipid content, feeding and immune response were evaluated. With the exception of very low inconsistent offspring mortality at 10 mg/L and 100 mg/L of recycled LDPE, no MP exposure-related adverse effects were recorded for D. magna. For P. scaber, increased feeding on non-contaminated leaves was observed for virgin LDPE at 5 g/kg and 15 g/kg. In addition, both LDPE induced a slight immune response at 5 g/kg and 15 g/kg with more parameters altered for virgin LDPE. Our results indicated different sublethal responses upon exposure to recycled compared to virgin LDPE MP.

13.
ACS Omega ; 6(8): 5255-5265, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681566

RESUMEN

Ultraviolet photoelectron spectroscopy (UPS) investigations of several gas-phase ionic liquid (IL) ion pairs have been conducted. [EMIM][OTF], [PYR14][OTF], [EMIM][DCA], [PYR14][DCA], [PYR14][TCM], [PYR14][FSI], [PYR14][PF6], [S222][TFSI], [P4441][TFSI], and [EMMIM][TFSI] vapor UPS spectra are presented for the first time. The experimental low-binding-energy cutoff value (highest occupied molecular orbital, HOMO energy) of the ionic liquid ion pairs, which is of great interest, has been measured. Many studies use calculated gas-phase electronic properties to estimate the liquid-phase electrochemical stability. Hybrid density functional theory (DFT) calculations have been used to interpret the experimental data. The gas-phase photoelectron spectra in conjunction with the theoretical calculations are able to verify most HOMO energies and assign them to the cation or anion. The hybrid M06 functional is shown to offer a very good description of the ionic liquid electronic structure. In some cases, the excellent agreement between the UPS spectra and the M06 calculation validates the conformer found and constitutes as a first indirect experimental determination of ionic liquid ion-pair structure. Comparisons with recent theoretical studies are made, and implications for electrochemical applications are discussed. The new data provide a much-needed reference for future ab initio calculations and support the argument that modeling of IL cations and anions separately is incorrect.

14.
J Colloid Interface Sci ; 584: 263-274, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069025

RESUMEN

Highly active electrocatalysts for electrochemical oxygen reduction reaction (ORR) were prepared by high-temperature pyrolysis from 5-methylresorcinol, Co and/or Fe salts and dicyandiamide, which acts simultaneously as a precursor for reactive carbonitride template and a nitrogen source. The electrocatalytic activity of the catalysts for ORR in alkaline solution was studied using the rotating disc electrode (RDE) method. The bimetallic catalyst containing iron and cobalt (FeCoNC-at) showed excellent stability and remarkable ORR performance, comparable to that of commercial Pt/C (20 wt%). The superior activity was attributed to high surface metal and nitrogen contents. The FeCoNC-at catalyst was further tested in anion exchange membrane fuel cell (AEMFC) with poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI) membrane, where a high value of peak power density (Pmax = 415 mW cm-2) was achieved.

15.
Nanotechnology ; 32(3): 035401, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33002885

RESUMEN

In this work He/H2 plasma jet treatment was used to reduce Pd ions in the aqueous solution with simultaneous deposition of created Pd nanoparticles to support materials. Graphene oxide (GO) and nitrogen-doped graphene oxide (NrGO) were both co-reduced with the Pd ions to formulate catalyst materials. Pd catalyst was also deposited on the surface of carbon black. The prepared catalyst materials were physically characterized using transmission electron microscopy, scanning electron microscopy and x-ray photoelectron spectroscopy. The plasma jet method yielded good dispersion of small Pd particles with average sizes of particles being: Pd/rGO 2.9 ± 0.6 nm, Pd/NrGO 2.3 ± 0.5 nm and Pd/Vulcan 2.8 ± 0.6 nm. The electrochemical oxygen reduction reaction (ORR) kinetics was explored using the rotating disk electrode method. Pd catalyst deposited on nitrogen-doped graphene material showed slightly improved ORR activity as compared to that on the nondoped substrate, however Vulcan carbon-supported Pd catalyst exhibited a higher specific activity for oxygen electroreduction.

16.
Arch Toxicol ; 94(5): 1561-1573, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32253467

RESUMEN

Clinical use of CuO nanoparticles (NPs) as antibacterials can be hampered by their toxicity to human cells. We hypothesized that certain surface functionalizations of CuO NPs may render NPs toxic to bacteria, but still be relatively harmless to human cells. To control this hypothesis, the toxicity of differently functionalized CuO NPs to bacteria Escherichia coli vs human cells (THP-1 macrophages and HACAT keratinocytes) was compared using similar conditions and end points. CuO NPs functionalized with polyethylene glycol (CuO-PEG), carboxyl (CuO-COOH, anionic), ammonium (CuO-NH4+, cationic) and unfunctionalized CuO NPs and CuSO4 (controls) were tested. In general, the toxicity of Cu compounds decreased in the following order: CuO-NH4+ > unfunctionalized CuO > CuSO4 > CuO-COOH > CuO-PEG. Positively charged unfunctionalized CuO and especially CuO-NH4+ proved most toxic (24-h EC50 = 21.7-47 mg/l) and had comparable toxicity to bacterial and mammalian cells. The multivariate analysis revealed that toxicity of these NPs was mostly attributed to their positive zeta potential, small hydrodynamic size, high Cu dissolution, and induction of reactive oxygen species (ROS) and TNF-α. In contrast, CuO-COOH and CuO-PEG NPs had lower toxicity to human cells compared to bacteria despite efficient uptake of these NPs by human cells. In addition, these NPs did not induce TNF-α and ROS. Thus, by varying the NP functionalization and Cu form (soluble salt vs NPs), it was possible to "target" the toxicity of Cu compounds, whereas carboxylation and PEGylation rendered CuO NPs that were more toxic to bacteria than to human cells envisaging their use in medical antibacterial products.


Asunto(s)
Antibacterianos/química , Cobre/química , Nanopartículas/química , Animales , Humanos , Nanopartículas del Metal , Especies Reactivas de Oxígeno , Propiedades de Superficie
17.
Colloids Surf B Biointerfaces ; 169: 222-232, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29778961

RESUMEN

Application of efficient antimicrobial surfaces has been estimated to decrease both, the healthcare-associated infections and the spread of antibiotic-resistant bacteria. In this paper, we prepared ZnO and ZnO/Ag nanoparticle covered surfaces and evaluated their antimicrobial efficacy towards a Gram-negative bacterial model (Escherichia coli), a Gram-positive bacterial model (Staphylococcus aureus) and a fungal model (Candida albicans) in the dark and under UVA illumination. The surfaces were prepared by spin coating aliquots of ZnO and ZnO/Ag nanoparticle suspensions onto glass substrates. Surfaces contained 2 or 20 µg Zn/cm2 and 0-0.02 µg Ag/cm2. No significant antimicrobial activity of the surfaces, except of those with the highest Ag or Zn content was observed in the dark. On the other hand, UVA illuminated surfaces containing 20 µg Zn/cm2 and 2 µg Zn plus 0.02 µg Ag/cm2 caused >3 log decrease in the viable counts of E. coli and S. aureus in 30 min. As proven by brilliant blue FCF dye degradation and elemental analysis of the surfaces, this remarkable antimicrobial activity was a combined result of photocatalytic effect and release of Zn and Ag ions from surfaces. Surfaces retained significant antibacterial and photocatalytic properties after several usage cycles. Compared to bacteria, yeast C. albicans was significantly less sensitive to the prepared surfaces and only about 1 log reduction of viable count was observed after 60 min UVA illumination. In conclusion, the developed ZnO/Ag surfaces exhibit not only high antibacterial activity but also some antifungal activity.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Nanocompuestos/química , Plata/farmacología , Rayos Ultravioleta , Óxido de Zinc/farmacología , Antibacterianos/química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Óxido de Zinc/química
18.
Beilstein J Nanotechnol ; 8: 229-236, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243561

RESUMEN

Colorimetric gas sensing is demonstrated by thin films based on ultrasmall TiO2 nanoparticles (NPs) on Si substrates. The NPs are bound into the film by p-toluenesulfonic acid (PTSA) and the film is made to absorb volatile organic compounds (VOCs). Since the color of the sensing element depends on the interference of reflected light from the surface of the film and from the film/silicon substrate interface, colorimetric detection is possible by the varying thickness of the NP-based film. Indeed, VOC absorption causes significant swelling of the film. Thus, the optical path length is increased, interference wavelengths are shifted and the refractive index of the film is decreased. This causes a change of color of the sensor element visible by the naked eye. The color response is rapid and changes reversibly within seconds of exposure. The sensing element is extremely simple and cheap, and can be fabricated by common coating processes.

19.
Curr Top Med Chem ; 15(18): 1914-29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961521

RESUMEN

The knowledge on potential harmful effects of metallic nanomaterials lags behind their increased use in consumer products and therefore, the safety data on various nanomaterials applicable for risk assessment are urgently needed. In this study, 11 metal oxide nanoparticles (MeOx NPs) prepared using flame pyrolysis method were analyzed for their toxicity against human alveolar epithelial cells A549, human epithelial colorectal cells Caco2 and murine fibroblast cell line Balb/c 3T3. The cell lines were exposed for 24 h to suspensions of 3-100 µg/mL MeOx NPs and cellular viability was evaluated using. Neutral Red Uptake (NRU) assay. In parallel to NPs, toxicity of soluble salts of respective metals was analyzed, to reveal the possible cellular effects of metal ions shedding from the NPs. The potency of MeOx to produce reactive oxygen species was evaluated in the cell-free assay. The used three cell lines showed comparable toxicity responses to NPs and their metal ion counterparts in the current test setting. Six MeOx NPs (Al2O3, Fe3O4, MgO, SiO2, TiO2, WO3) did not show toxic effects below 100 µg/mL. For five MeOx NPs, the averaged 24 h IC50 values for the three mammalian cell lines were 16.4 µg/mL for CuO, 22.4 µg/mL for ZnO, 57.3 µg/mL for Sb2O3, 132.3 µg/mL for Mn3O4 and 129 µg/mL for Co3O4. Comparison of the dissolution level of MeOx and the toxicity of soluble salts allowed to conclude that the toxicity of CuO, ZnO and Sb2O3 NPs was driven by release of metal ions. The toxic effects of Mn3O4 and Co3O4 could be attributed to the ROS-inducing ability of these NPs. All the NPs were internalized by the cells according to light microscopy studies but also proven by TEM, and internalization of Co3O4 NPs seemed to be most prominent in this aspect. In conclusion, this work provides valuable toxicological data for a library of 11 MeOx NPs. Combining the knowledge on toxic or non-toxic nature of nanomaterials may be used for safe-by-design approach.


Asunto(s)
Óxido de Aluminio/toxicidad , Óxido Ferrosoférrico/toxicidad , Óxido de Magnesio/toxicidad , Nanopartículas/toxicidad , Óxidos/toxicidad , Dióxido de Silicio/toxicidad , Titanio/toxicidad , Tungsteno/toxicidad , Óxido de Aluminio/química , Animales , Células 3T3 BALB , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Óxido Ferrosoférrico/química , Humanos , Óxido de Magnesio/química , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Óxidos/química , Tamaño de la Partícula , Dióxido de Silicio/química , Relación Estructura-Actividad , Propiedades de Superficie , Titanio/química , Tungsteno/química
20.
J Photochem Photobiol B ; 142: 178-85, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25545332

RESUMEN

Titanium dioxide is a photocatalyst with well-known ability to oxidise a wide range of organic contaminants as well as to destroy microbial cells. In the present work TiO2 nanoparticles with high specific surface area (150m(2)/g) were used to prepare nanostructured films. The TiO2 nanoparticle-based film in combination with UV-A illumination with intensity (22W/m(2)) comparable to that of the sunlight in the UV-A region was used to demonstrate light-induced antibacterial effects. Fast and effective inactivation of Escherichia coli cells on the prepared thin films was observed. Visualization of bacterial cells under scanning electron microscopy (SEM) showed enlargement of the cells, distortion of cellular membrane and possible leakage of cytoplasm after 10min of exposure to photoactivated TiO2. According to the plate counts there were no viable cells as early as after 20min of exposure to UV-A activated TiO2. In parallel to effects on bacterial cell viability and morphology, changes in saturated and unsaturated fatty acids - important components of bacterial cell membrane-were studied. Fast decomposition of saturated fatty acids and changes in chemical structure of unsaturated fatty acids were detected. Thus, we suggest that peroxidation and decomposition of membrane fatty acids could be one of the factors contributing to the morphological changes of bacteria observed under SEM, and ultimately, cell death.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Ácidos Grasos/química , Nanopartículas del Metal/química , Nanoestructuras/química , Titanio/química , Rayos Ultravioleta , Antibacterianos/química , Catálisis , Escherichia coli/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Microscopía Electrónica de Rastreo , Nanoestructuras/toxicidad , Espectroscopía de Fotoelectrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA