RESUMEN
The national importance of telemedicine for safe and effective patient care has been highlighted by the current COVID-19 pandemic. Prior to the 2020 pandemic the Division of Genetics and Metabolism piloted a telemedicine program focused on initial and follow-up visits in the patients' home. The goals were to increase access to care, decrease missed work, improve scheduling, and avoid the transport and exposure of medically fragile patients. Visits were conducted by physician medical geneticists, genetic counselors, and biochemical dietitians, together and separately. This allowed the program to develop detailed standard operating procedures. At the onset of the COVID-19 pandemic, this pilot-program was deployed by the full team of 22 providers in one business day. Two physicians remained on-site for patients requiring in-person evaluations. This model optimized patient safety and workforce preservation while providing full access to patients during a pandemic. We provide initial data on visit numbers, types of diagnoses, and no-show rates. Experience in this implementation before and during the pandemic has confirmed the effectiveness and value of telemedicine for a highly complex medical population. This program is a model that can and will be continued well-beyond the current crisis.
Asunto(s)
COVID-19/epidemiología , Atención a la Salud/organización & administración , Endocrinología/organización & administración , Genética Médica/organización & administración , Modelos Organizacionales , Pandemias , Telemedicina/organización & administración , Adolescente , Adulto , Niño , Preescolar , Atención a la Salud/métodos , Atención a la Salud/normas , Endocrinología/educación , Femenino , Asesoramiento Genético/métodos , Asesoramiento Genético/organización & administración , Asesoramiento Genético/normas , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/terapia , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genética Médica/educación , Humanos , Ciencia de la Implementación , Lactante , Recién Nacido , Internado y Residencia/métodos , Internado y Residencia/organización & administración , Internado y Residencia/normas , Masculino , Enfermedades Metabólicas/epidemiología , Enfermedades Metabólicas/terapia , Persona de Mediana Edad , Seguridad del Paciente , Proyectos Piloto , Evaluación de Programas y Proyectos de Salud , Telemedicina/métodos , Adulto JovenRESUMEN
Current rhabdomyolysis treatment guidelines vary based on the etiology and diagnosis, yet many cases evade conclusive diagnosis. In these cases, treatment options remain largely limited to fluids and supportive therapy. We present two cases of acute rhabdomyolysis diagnosed in the emergency department: a 5-year-old boy with sudden onset bilateral flank pain, and a 13-year-old boy with 2-3 days of worsening pectoral and shoulder pain. Each patient had a prior similar episode requiring hospitalization in the past. The 5-year-old had no inciting trauma or trigger, medication use, or illness. The 13-year-old previously had an upper respiratory infection during the week prior and had been strenuously exercising at the time of onset. Genetic testing results were unknown for both patients during their hospitalizations, and insurance and other barriers led to delay. Later results for the first patient revealed a heterozygous deletion in intron 19 on the LPIN1 gene interpreted as a variant of unknown significance. During their hospitalizations, both children were started on intravenous (i.v.) fluids, and creatine kinase (CK) initially trended downward, but then began to rise or plateau. After reviewing the cases, prior literature, and anecdotal evidence of benefit from corticosteroid therapy in rhabdomyolysis with our consultant metabolic physicians, dexamethasone was initiated. In both patients, dexamethasone use correlated with relief of patient symptoms, significantly decreased CK value, and our ability to discharge these patients home quickly. Our cases, discussion, and literature review all lead to the consideration of the use of dexamethasone in conjunction with standard therapy for acute rhabdomyolysis.
Asunto(s)
Creatina Quinasa/genética , Dexametasona/administración & dosificación , Mioglobinuria/tratamiento farmacológico , Fosfatidato Fosfatasa/genética , Adolescente , Corticoesteroides/administración & dosificación , Preescolar , Eliminación de Gen , Heterocigoto , Humanos , Masculino , Mioglobinuria/genética , Mioglobinuria/patología , PediatríaRESUMEN
Glutaric acidemia type 2 (GA2), also called multiple acyl-CoA dehydrogenase deficiency, is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism resulting in excretion of multiple organic acids and glycine conjugates as well as elevation of various plasma acylcarnitine species (C4-C18). It is caused by mutations in the ETFA, ETFB, or ETFDH genes which are involved in the transfer of electrons from 11 flavin-containing dehydrogenases to Coenzyme Q10 (CoQ10 ) of the mitochondrial electron transport chain (ETC). We report a patient who was originally reported as the first case with primary myopathic CoQ10 deficiency when he presented at 11.5 years with exercise intolerance and myopathy that improved after treatment with ubiquinone and carnitine. At age 23, his symptoms relapsed despite increasing doses of ubiquinone and he was shown to have biallelic mutations in the ETFDH gene. Treatment with riboflavin was started and ubiquinone was changed to ubiquinol. After 4 months, the patient recovered his muscle strength with normalization of laboratory exams and exercise tolerance. Functional studies on fibroblasts revealed decreased levels of ETFDH as well as of very long-chain acyl-CoA dehydrogenase and trifunctional protein α. In addition, the mitochondrial mass was decreased, with increased formation of reactive oxygen species and oxygen consumption rate, but with a decreased spared respiratory capacity, and decreased adenosine triphosphate level. These findings of widespread dysfunction of fatty acid oxidation and ETC enzymes support the impairment of a larger mitochondrial ETC supercomplex in our patient.
Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/genética , Ataxia/genética , Flavoproteínas Transportadoras de Electrones/genética , Proteínas Hierro-Azufre/genética , Enfermedades Mitocondriales/genética , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Debilidad Muscular/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Ubiquinona/deficiencia , Adulto , Edad de Inicio , Ataxia/diagnóstico , Ataxia/patología , Niño , Metabolismo Energético/genética , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/patología , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/patología , Debilidad Muscular/diagnóstico , Debilidad Muscular/patología , Ubiquinona/análogos & derivados , Ubiquinona/genética , Adulto JovenRESUMEN
Congenital heart disease (CHD) remains the most common birth defect, with an estimated incidence of approximately 1% of all births. The population of adults with CHD is growing rapidly with advances in medical care. Overall survival to adulthood in the current era estimated to exceed 90%. Genetic causes of CHD can be classified into several broad categories: (a) chromosomal aneuploidy, (b) large chromosomal deletion or duplication, (c) single gene mutation, and (d) copy number variation. However, only 20-30% of CHD cases have an established etiology characterized by either genetic abnormalities or environmental factors. The role of genetics in the field of adult CHD is only increasing. More adult patients with CHD are seeking genetic counseling to understand the etiology of their underlying CHD and the risks to future offspring. A multidisciplinary approach is essential to provide appropriate counseling to patients regarding indications for genetic testing and interpretations of results. Novel advances with precision medicine may soon enable clinicians to individualize therapies for a comprehensive approach to the care of adult patients with CHD.
Asunto(s)
Duplicación Cromosómica/genética , Anomalías Congénitas/genética , Pruebas Genéticas , Cardiopatías Congénitas/genética , Adulto , Aneuploidia , Deleción Cromosómica , Anomalías Congénitas/patología , Variaciones en el Número de Copia de ADN/genética , Enfermedades Genéticas Congénitas/genética , Cardiopatías Congénitas/patología , HumanosRESUMEN
Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes-NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.
Asunto(s)
Anomalías Múltiples/genética , Proteínas de Ciclo Celular/genética , Síndrome de Cornelia de Lange/genética , Discapacidad Intelectual/genética , Anomalías Múltiples/epidemiología , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/epidemiología , Síndrome de Cornelia de Lange/fisiopatología , Cara/fisiopatología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Recién Nacido , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Fenotipo , Grupos Raciales/genética , Adulto JovenRESUMEN
Williams-Beuren syndrome (WBS) is a common microdeletion syndrome characterized by a 1.5Mb deletion in 7q11.23. The phenotype of WBS has been well described in populations of European descent with not as much attention given to other ethnicities. In this study, individuals with WBS from diverse populations were assessed clinically and by facial analysis technology. Clinical data and images from 137 individuals with WBS were found in 19 countries with an average age of 11 years and female gender of 45%. The most common clinical phenotype elements were periorbital fullness and intellectual disability which were present in greater than 90% of our cohort. Additionally, 75% or greater of all individuals with WBS had malar flattening, long philtrum, wide mouth, and small jaw. Using facial analysis technology, we compared 286 Asian, African, Caucasian, and Latin American individuals with WBS with 286 gender and age matched controls and found that the accuracy to discriminate between WBS and controls was 0.90 when the entire cohort was evaluated concurrently. The test accuracy of the facial recognition technology increased significantly when the cohort was analyzed by specific ethnic population (P-value < 0.001 for all comparisons), with accuracies for Caucasian, African, Asian, and Latin American groups of 0.92, 0.96, 0.92, and 0.93, respectively. In summary, we present consistent clinical findings from global populations with WBS and demonstrate how facial analysis technology can support clinicians in making accurate WBS diagnoses.
Asunto(s)
Variación Biológica Poblacional , Heterogeneidad Genética , Síndrome de Williams/diagnóstico , Síndrome de Williams/genética , Antropometría/métodos , Facies , Humanos , Fenotipo , Grupos de Población , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Síndrome de Williams/epidemiologíaRESUMEN
Noonan syndrome (NS) is a common genetic syndrome associated with gain of function variants in genes in the Ras/MAPK pathway. The phenotype of NS has been well characterized in populations of European descent with less attention given to other groups. In this study, individuals from diverse populations with NS were evaluated clinically and by facial analysis technology. Clinical data and images from 125 individuals with NS were obtained from 20 countries with an average age of 8 years and female composition of 46%. Individuals were grouped into categories of African descent (African), Asian, Latin American, and additional/other. Across these different population groups, NS was phenotypically similar with only 2 of 21 clinical elements showing a statistically significant difference. The most common clinical characteristics found in all population groups included widely spaced eyes and low-set ears in 80% or greater of participants, short stature in more than 70%, and pulmonary stenosis in roughly half of study individuals. Using facial analysis technology, we compared 161 Caucasian, African, Asian, and Latin American individuals with NS with 161 gender and age matched controls and found that sensitivity was equal to or greater than 94% for all groups, and specificity was equal to or greater than 90%. In summary, we present consistent clinical findings from global populations with NS and additionally demonstrate how facial analysis technology can support clinicians in making accurate NS diagnoses. This work will assist in earlier detection and in increasing recognition of NS throughout the world.
Asunto(s)
Cara/fisiopatología , Genética de Población , Síndrome de Noonan/genética , Pueblo Asiatico , Población Negra/genética , Niño , Femenino , Humanos , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Síndrome de Noonan/fisiopatología , Transducción de Señal , Población Blanca/genética , Proteínas ras/genéticaRESUMEN
PURPOSE OF REVIEW: Congenital heart disease (CHD) remains the most common birth defect, occurring in 1% of all births. Although the exact etiology of CHD is still largely unknown, it is thought to be an interaction of genetic and non-genetic factors. The purposes of this review are to summarize recent advances in CHD genetics and testing and to present a suggested algorithm for appropriate use of genetic testing in patients with CHD. RECENT FINDINGS: Advances in genetic testing technology are rapidly expanding the options for screening and are providing further insights into the genetic and molecular background of non-syndromic CHD. As the field advances, the role of the geneticist and genetic counselor will continue to expand as the testing becomes more complex and interpretation of results becomes increasingly challenging. Coordination of practice between cardiologists and geneticists using a shared clinical structure is essential and will help improve cost utilization and facilitate individualized patient care.