Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(9): 15710-15722, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859215

RESUMEN

We compare multiple temporal pulse characterization techniques in three different pulse duration regimes from 15 fs to sub-5 fs, as there are no available standards yet for measuring such ultrashort pulses. To accomplish this, a versatile post-compression platform was developed, where the 100 fs near infrared pulses were post-compressed to the sub-two-cycle regime in a hybrid, three-stage configuration. After each stage, the duration of the compressed pulse was measured with the d-scan, TIPTOE and SRSI techniques and the retrieved temporal intensity profiles, spectrum and spectral phases were compared. Spectral homogeneity was also measured with an imaging spectrometer to understand the input coupling conditions of the temporal measurements. Our findings suggest that the different devices give similar results in terms of temporal intensity profile, however they are extremely sensitive to alignment and to beam quality, especially in the case of the shortest pulses. We address specific steps of measurement procedures, which paves the way towards the standardization of pulse characterization in the near future.

2.
Nucleic Acids Res ; 52(14): 8399-8418, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38943349

RESUMEN

TMPyP is a porphyrin capable of DNA binding and used in photodynamic therapy and G-quadruplex stabilization. Despite its broad applications, TMPyP's effect on DNA nanomechanics is unknown. Here we investigated, by manipulating λ-phage DNA with optical tweezers combined with microfluidics in equilibrium and perturbation kinetic experiments, how TMPyP influences DNA nanomechanics across wide ranges of TMPyP concentration (5-5120 nM), mechanical force (0-100 pN), NaCl concentration (0.01-1 M) and pulling rate (0.2-20 µm/s). Complex responses were recorded, for the analysis of which we introduced a simple mathematical model. TMPyP binding, which is a highly dynamic process, leads to dsDNA lengthening and softening. dsDNA stability increased at low (<10 nM) TMPyP concentrations, then decreased progressively upon increasing TMPyP concentration. Overstretch cooperativity decreased, due most likely to mechanical roadblocks of ssDNA-bound TMPyP. TMPyP binding increased ssDNA's contour length. The addition of NaCl at high (1 M) concentration competed with the TMPyP-evoked nanomechanical changes. Because the largest amplitude of the changes is induced by the pharmacologically relevant TMPyP concentration range, this porphyrin derivative may be used to tune DNA's structure and properties, hence control the wide array of biomolecular DNA-dependent processes including replication, transcription, condensation and repair.


Asunto(s)
Pinzas Ópticas , Porfirinas , Porfirinas/química , Cinética , ADN/química , ADN/metabolismo , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , Bacteriófago lambda/genética , Nanotecnología/métodos , ADN Viral/metabolismo , ADN Viral/química , Cloruro de Sodio/química , Cloruro de Sodio/farmacología
3.
Sci Rep ; 14(1): 12016, 2024 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797778

RESUMEN

Hypercholesterolemia (HC) induces, propagates and exacerbates cardiovascular diseases via various mechanisms that are yet not properly understood. Extracellular vesicles (EVs) are involved in the pathomechanism of these diseases. To understand how circulating or cardiac-derived EVs could affect myocardial functions, we analyzed the metabolomic profile of circulating EVs, and we performed an in-depth analysis of cardiomyocyte (CM)-derived EVs in HC. Circulating EVs were isolated with Vezics technology from male Wistar rats fed with high-cholesterol or control chow. AC16 human CMs were treated with Remembrane HC supplement and EVs were isolated from cell culture supernatant. The biophysical properties and the protein composition of CM EVs were analyzed. THP1-ASC-GFP cells were treated with CM EVs, and monocyte activation was measured. HC diet reduced the amount of certain phosphatidylcholines in circulating EVs, independently of their plasma level. HC treatment significantly increased EV secretion of CMs and greatly modified CM EV proteome, enriching several proteins involved in tissue remodeling. Regardless of the treatment, CM EVs did not induce the activation of THP1 monocytes. In conclusion, HC strongly affects the metabolome of circulating EVs and dysregulates CM EVs, which might contribute to HC-induced cardiac derangements.


Asunto(s)
Vesículas Extracelulares , Hipercolesterolemia , Miocitos Cardíacos , Ratas Wistar , Vesículas Extracelulares/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Hipercolesterolemia/sangre , Masculino , Ratas , Humanos , Monocitos/metabolismo
4.
Opt Express ; 32(2): 1325-1333, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297687

RESUMEN

We demonstrate high-harmonic generation for the time-domain observation of the electric field (HHG-TOE) and use it to measure the waveform of ultrashort mid-infrared (MIR) laser pulses interacting with ZnO thin-films or WS2 monolayers. The working principle relies on perturbing HHG in solids with a weak replica of the pump pulse. We measure the duration of few-cycle pulses at 3200 nm, in reasonable agreement with the results of established pulse characterization techniques. Our method provides a straightforward approach to accurately characterize femtosecond laser pulses used for HHG experiments right at the point of interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...