Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 14(5): 752-765, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227896

RESUMEN

A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE: STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Exodesoxirribonucleasas , Proteínas de la Membrana , Fosfoproteínas , Transducción de Señal , Exodesoxirribonucleasas/genética , Ratones , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Humanos , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Interferones/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo
2.
Cancer Sci ; 114(10): 3806-3815, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37475576

RESUMEN

The cGAS/STING pathway provides a key host defense mechanism by detecting the accumulation of cytoplasmic double-stranded DNA (dsDNA) and mediating innate and adaptive immune signaling. In addition to detecting pathogen-derived dsDNA, cGAS senses intrinsic dsDNA, such as those associated with defective cell cycle progression and mitophagy that has leaked from the nucleus or mitochondria, and subsequently evokes host immunity to eliminate pathogenic cells. In cancer cells, dysregulation of DNA repair and cell cycle caused at the DNA replication checkpoint and spindle assembly checkpoint results in aberrant cytoplasmic dsDNA accumulation, stimulating anti-tumor immunity. Therefore, the suppression of cGAS/STING signaling is beneficial for survival and frequently observed in cancer cells as a way to evade detection by the immune system, and is likely to be related to immune checkpoint blockade (ICB) resistance. Indeed, the mechanisms of ICB resistance overlap with those acquired in cancers during immunoediting to evade immune surveillance. This review highlights the current understanding of cGAS/STING suppression in cancer cells and discusses how to establish effective strategies to regenerate effective anti-tumor immunity through reactivation of the cGAS/STING pathway.

3.
Commun Biol ; 6(1): 65, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653474

RESUMEN

Human cancers often re-express germline factors, yet their mechanistic role in oncogenesis and cancer progression remains unknown. Here we demonstrate that DEAD-box helicase 4 (DDX4), a germline factor and RNA helicase conserved in all multicellular organisms, contributes to increased cell motility and cisplatin-mediated drug resistance in small cell lung cancer (SCLC) cells. Proteomic analysis suggests that DDX4 expression upregulates proteins related to DNA repair and immune/inflammatory response. Consistent with these trends in cell lines, DDX4 depletion compromised in vivo tumor development while its overexpression enhanced tumor growth even after cisplatin treatment in nude mice. Further, the relatively higher DDX4 expression in SCLC patients correlates with decreased survival and shows increased expression of immune/inflammatory response markers. Taken together, we propose that DDX4 increases SCLC cell survival, by increasing the DNA damage and immune response pathways, especially under challenging conditions such as cisplatin treatment.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Ratones , Animales , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Ratones Desnudos , Proteómica , Células Germinativas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
4.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150391

RESUMEN

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Decitabina , Genes ras , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
5.
Cancer Res ; 82(21): 4079-4092, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36066413

RESUMEN

Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE: MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Amplificación de Genes , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , 5'-Nucleotidasa/metabolismo
6.
Hepatology ; 74(4): 1971-1993, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33931882

RESUMEN

BACKGROUND AND AIMS: Synthetic cyclin-dependent kinase (CDK) 4/6 inhibitors exert antitumor effects by forcing RB1 in unphosphorylated status, causing not only cell cycle arrest but also cellular senescence, apoptosis, and increased immunogenicity. These agents currently have an indication in advanced breast cancers and are in clinical trials for many other solid tumors. HCC is one of promising targets of CDK4/6 inhibitors. RB family dysfunction is often associated with the initiation of HCC; however, this is revivable, as RB family members are not frequently mutated or deleted in this malignancy. APPROACH AND RESULTS: Loss of all Rb family members in transformation related protein 53 (Trp53)-/- mouse liver resulted in liver tumor reminiscent of human HCC, and re-expression of RB1 sensitized these tumors to a CDK4/6 inhibitor, palbociclib. Introduction of an unphosphorylatable form of RB1 (RB7LP) into multiple liver tumor cell lines induced effects similar to palbociclib. By screening for compounds that enhance the efficacy of RB7LP, we identified an I kappa B kinase (IKK)ß inhibitor Bay 11-7082. Consistently, RB7LP expression and treatment with palbociclib enhanced IKKα/ß phosphorylation and NF-κB activation. Combination therapy using palbociclib with Bay 11-7082 was significantly more effective in hepatoblastoma and HCC treatment than single administration. Moreover, blockade of IKK-NF-κB or AKT pathway enhanced effects of palbociclib on RB1-intact KRAS Kirsten rat sarcoma viral oncogene homolog mutated lung and colon cancers. CONCLUSIONS: In conclusion, CDK4/6 inhibitors have a potential to treat a wide variety of RB1-intact cancers including HCC when combined with an appropriate kinase inhibitor.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Carcinoma Hepatocelular/genética , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Células Hep G2 , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/genética , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/genética , Ratones , Trasplante de Neoplasias , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Purinas/farmacología , Purinas/uso terapéutico , Piridinas/uso terapéutico , Proteína de Retinoblastoma , Proteína p53 Supresora de Tumor/genética , Proteínas de Xenopus
7.
Expert Opin Ther Targets ; 25(3): 167-174, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33703985

RESUMEN

INTRODUCTION: KRAS mutations drive tumorigenesis by altering cell signaling and the tumor immune microenvironment. Recent studies have shown promise for KRAS-G12C covalent inhibitors, which are advancing rapidly through clinical trials. The sequencing and combination of these agents with other therapies including immune checkpoint blockade (ICB) will benefit from strategies that also address the immune microenvironment to improve durability of response. AREAS COVERED: This paper reviews KRAS signaling and discusses downstream effects on cytokine production and the tumor immune microenvironment. RAS targeted therapy is introduced and perspectives on therapeutic targeting of KRAS-G12C and its immunosuppressive tumor microenvironment are offered. EXPERT OPINION: The availability of KRAS-G12C covalent inhibitors raises hopes for targeting this pervasive oncogene and designing better therapeutic combinations to promote anti-tumor immunity. A comprehensive mechanistic understanding of KRAS immunosuppression is required in order to prioritize agents for clinical trials.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Animales , Antineoplásicos/administración & dosificación , Diseño de Fármacos , Humanos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad Innata , Terapia Molecular Dirigida , Mutación , Neoplasias/genética , Neoplasias/inmunología , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral/inmunología
8.
Cancer Discov ; 11(8): 1952-1969, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33707236

RESUMEN

Small cell lung carcinoma (SCLC) is highly mutated, yet durable response to immune checkpoint blockade (ICB) is rare. SCLC also exhibits cellular plasticity, which could influence its immunobiology. Here we discover that a distinct subset of SCLC uniquely upregulates MHC I, enriching for durable ICB benefit. In vitro modeling confirms epigenetic recovery of MHC I in SCLC following loss of neuroendocrine differentiation, which tracks with derepression of STING. Transient EZH2 inhibition expands these nonneuroendocrine cells, which display intrinsic innate immune signaling and basally restored antigen presentation. Consistent with these findings, murine nonneuroendocrine SCLC tumors are rejected in a syngeneic model, with clonal expansion of immunodominant effector CD8 T cells. Therapeutically, EZH2 inhibition followed by STING agonism enhances T-cell recognition and rejection of SCLC in mice. Together, these data identify MHC I as a novel biomarker of SCLC immune responsiveness and suggest novel immunotherapeutic approaches to co-opt SCLC's intrinsic immunogenicity. SIGNIFICANCE: SCLC is poorly immunogenic, displaying modest ICB responsiveness with rare durable activity. In profiling its plasticity, we uncover intrinsically immunogenic MHC Ihi subpopulations of nonneuroendocrine SCLC associated with durable ICB benefit. We also find that combined EZH2 inhibition and STING agonism uncovers this cell state, priming cells for immune rejection.This article is highlighted in the In This Issue feature, p. 1861.


Asunto(s)
Plasticidad de la Célula , Neoplasias Pulmonares/inmunología , Carcinoma Pulmonar de Células Pequeñas/inmunología , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Registros Electrónicos de Salud , Humanos , Neoplasias Pulmonares/patología , Ratones , Carcinoma Pulmonar de Células Pequeñas/patología
9.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33151910

RESUMEN

Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.


Asunto(s)
Inmunoterapia , Proteínas de Neoplasias , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1 , RNA-Seq , Análisis de la Célula Individual , Esferoides Celulares , Animales , Línea Celular Tumoral , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Esferoides Celulares/inmunología , Esferoides Celulares/patología
10.
Front Immunol ; 11: 2090, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013881

RESUMEN

Intratumoral recruitment of immune cells following innate immune activation is critical for anti-tumor immunity and involves cytosolic dsDNA sensing by the cGAS/STING pathway. We have previously shown that KRAS-LKB1 (KL) mutant lung cancer, which is resistant to PD-1 blockade, exhibits silencing of STING, impaired tumor cell production of immune chemoattractants, and T cell exclusion. Since the vasculature is also a critical gatekeeper of immune cell infiltration into tumors, we developed a novel microfluidic model to study KL tumor-vascular interactions. Notably, dsDNA priming of LKB1-reconstituted tumor cells activates the microvasculature, even when tumor cell STING is deleted. cGAS-driven extracellular export of 2'3' cGAMP by cancer cells activates STING signaling in endothelial cells and cooperates with type 1 interferon to increase vascular permeability and expression of E selectin, VCAM-1, and ICAM-1 and T cell adhesion to the endothelium. Thus, tumor cell cGAS-STING signaling not only produces T cell chemoattractants, but also primes tumor vasculature for immune cell escape.


Asunto(s)
Células Endoteliales/metabolismo , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica , Nucleótidos Cíclicos/metabolismo , Transducción de Señal , Línea Celular Tumoral , Técnicas de Cocultivo , Células Endoteliales/patología , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nucleótidos Cíclicos/genética
11.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244804

RESUMEN

The RB gene is one of the most frequently mutated genes in human cancers. Canonically, RB exerts its tumor suppressive activity through the regulation of the G1/S transition during cell cycle progression by modulating the activity of E2F transcription factors. However, aberration of the RB gene is most commonly detected in tumors when they gain more aggressive phenotypes, including metastatic activity or drug resistance, rather than accelerated proliferation. This implicates RB controls' malignant progression to a considerable extent in a cell cycle-independent manner. In this review, we highlight the multifaceted functions of the RB protein in controlling tumor lineage plasticity, metabolism, and the tumor microenvironment (TME), with a focus on the mechanism whereby RB controls the TME. In brief, RB inactivation in several types of cancer cells enhances production of pro-inflammatory cytokines, including CCL2, through upregulation of mitochondrial reactive oxygen species (ROS) production. These factors not only accelerate the growth of cancer cells in a cell-autonomous manner, but also stimulate non-malignant cells in the TME to generate a pro-tumorigenic niche in a non-cell-autonomous manner. Here, we discuss the biological and pathological significance of the non-cell-autonomous functions of RB and attempt to predict their potential clinical relevance to cancer immunotherapy.


Asunto(s)
Ciclo Celular/genética , Neoplasias/genética , Proteína de Retinoblastoma/genética , Microambiente Tumoral/genética , Proteínas Supresoras de Tumor/genética , Citocinas/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteínas Supresoras de Tumor/metabolismo
12.
Cancer Res ; 79(15): 3903-3915, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189648

RESUMEN

Cancer cell-intrinsic properties caused by oncogenic mutations have been well characterized; however, how specific oncogenes and tumor suppressors impact the tumor microenvironment (TME) is not well understood. Here, we present a novel non-cell-autonomous function of the retinoblastoma (RB) tumor suppressor in controlling the TME. RB inactivation stimulated tumor growth and neoangiogenesis in a syngeneic and orthotropic murine soft-tissue sarcoma model, which was associated with recruitment of tumor-associated macrophages (TAM) and immunosuppressive cells such as Gr1+CD11b+ myeloid-derived suppressor cells (MDSC) or Foxp3+ regulatory T cells (Treg). Gene expression profiling and analysis of genetically engineered mouse models revealed that RB inactivation increased secretion of the chemoattractant CCL2. Furthermore, activation of the CCL2-CCR2 axis in the TME promoted tumor angiogenesis and recruitment of TAMs and MDSCs into the TME in several tumor types including sarcoma and breast cancer. Loss of RB increased fatty acid oxidation (FAO) by activating AMP-activated protein kinase that led to inactivation of acetyl-CoA carboxylase, which suppresses FAO. This promoted mitochondrial superoxide production and JNK activation, which enhanced CCL2 expression. These findings indicate that the CCL2-CCR2 axis could be an effective therapeutic target in RB-deficient tumors. SIGNIFICANCE: These findings demonstrate the cell-nonautonomous role of the tumor suppressor retinoblastoma in the tumor microenvironment, linking retinoblastoma loss to immunosuppression.


Asunto(s)
Quimiocina CCL2/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Quimiocina CCL2/biosíntesis , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR2/metabolismo , Proteína de Retinoblastoma/deficiencia , Neoplasias de los Tejidos Blandos/metabolismo , Neoplasias de los Tejidos Blandos/patología , Microambiente Tumoral , Regulación hacia Arriba
13.
Cancer Discov ; 9(1): 34-45, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30297358

RESUMEN

KRAS-driven lung cancers frequently inactivate TP53 and/or STK11/LKB1, defining tumor subclasses with emerging clinical relevance. Specifically, KRAS-LKB1 (KL)-mutant lung cancers are particularly aggressive, lack PD-L1, and respond poorly to immune checkpoint blockade (ICB). The mechanistic basis for this impaired immunogenicity, despite the overall high mutational load of KRAS-mutant lung cancers, remains obscure. Here, we report that LKB1 loss results in marked silencing of stimulator of interferon genes (STING) expression and insensitivity to cytoplasmic double-strand DNA (dsDNA) sensing. This effect is mediated at least in part by hyperactivation of DNMT1 and EZH2 activity related to elevated S-adenylmethionine levels and reinforced by DNMT1 upregulation. Ectopic expression of STING in KL cells engages IRF3 and STAT1 signaling downstream of TBK1 and impairs cellular fitness, due to the pathologic accumulation of cytoplasmic mitochondrial dsDNA associated with mitochondrial dysfunction. Thus, silencing of STING avoids these negative consequences of LKB1 inactivation, while facilitating immune escape. SIGNIFICANCE: Oncogenic KRAS-mutant lung cancers remain treatment-refractory and are resistant to ICB in the setting of LKB1 loss. These results begin to uncover the key underlying mechanism and identify strategies to restore STING expression, with important therapeutic implications because mitochondrial dysfunction is an obligate component of this tumor subtype.See related commentary by Corte and Byers, p. 16.This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Adenocarcinoma/genética , Eliminación de Gen , Neoplasias Pulmonares/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenocarcinoma/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 3 Regulador del Interferón/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/genética , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción STAT1/metabolismo
14.
Cancer Cell ; 34(3): 439-452.e6, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205046

RESUMEN

Despite extensive efforts, oncogenic KRAS remains resistant to targeted therapy. Combined downstream RAL-TBK1 and MEK inhibition induces only transient lung tumor shrinkage in KRAS-driven genetically engineered mouse models (GEMMs). Using the sensitive KRAS;LKB1 (KL) mutant background, we identify YAP1 upregulation and a therapy-induced secretome as mediators of acquired resistance. This program is reversible, associated with H3K27 promoter acetylation, and suppressed by BET inhibition, resensitizing resistant KL cells to TBK1/MEK inhibition. Constitutive YAP1 signaling promotes intrinsic resistance in KRAS;TP53 (KP) mutant lung cancer. Intermittent treatment with the BET inhibitor JQ1 thus overcomes resistance to combined pathway inhibition in KL and KP GEMMs. Using potent and selective TBK1 and BET inhibitors we further develop an effective therapeutic strategy with potential translatability to the clinic.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/inmunología , Células HEK293 , Humanos , Inmunidad Innata/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/inmunología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ratones , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción , Proteínas Señalizadoras YAP
15.
Lab Chip ; 18(20): 3129-3143, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30183789

RESUMEN

Microfluidic culture has the potential to revolutionize cancer diagnosis and therapy. Indeed, several microdevices are being developed specifically for clinical use to test novel cancer therapeutics. To be effective, these platforms need to replicate the continuous interactions that exist between tumor cells and non-tumor cell elements of the tumor microenvironment through direct cell-cell or cell-matrix contact or by the secretion of signaling factors such as cytokines, chemokines and growth factors. Given the challenges of personalized or precision cancer therapy, especially with the advent of novel immunotherapies, a critical need exists for more sophisticated ex vivo diagnostic systems that recapitulate patient-specific tumor biology with the potential to predict response to immune-based therapies in real-time. Here, we present details of a method to screen for the response of patient tumors to immune checkpoint blockade therapy, first reported in Jenkins et al. Cancer Discovery, 2018, 8, 196-215, with updated evaluation of murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS), including evaluation of the requirement for 3D microfluidic culture in MDOTS, demonstration of immune-checkpoint sensitivity of PDOTS, and expanded evaluation of tumor-immune interactions using RNA-sequencing to infer changes in the tumor-immune microenvironment. We also examine some potential improvements to current systems and discuss the challenges in translating such diagnostic assays to the clinic.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Inmunidad , Dispositivos Laboratorio en un Chip , Esferoides Celulares/inmunología , Animales , Línea Celular Tumoral , Ratones
16.
Nat Med ; 24(8): 1143-1150, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30038220

RESUMEN

Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy.


Asunto(s)
Retrovirus Endógenos/metabolismo , Inmunidad Innata/efectos de los fármacos , Interferones/farmacología , Neoplasias/inmunología , Neoplasias/virología , Animales , Línea Celular Tumoral , Retrovirus Endógenos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Neoplasias/genética , ARN sin Sentido/genética
17.
Clin Cancer Res ; 24(6): 1243-1245, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29343556

RESUMEN

Although mutation of NF1 has been described in non-small cell lung cancer (NSCLC), co-mutation with RASA1, another Ras-GTPase activating protein (RasGAP), defines a novel genetically defined subclass of NSCLC. RASA1/NF1-mutant cell lines are highly sensitive to MEK inhibitors, warranting clinical evaluation of MAPK inhibition in this subclass of patients. Clin Cancer Res; 24(6); 1243-5. ©2018 AACRSee related article by Hayashi et al., p. 1436.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Humanos , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas , Fumar , Proteína Activadora de GTPasa p120/genética
18.
Cancer Res ; 78(4): 1044-1057, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29259014

RESUMEN

An increasingly recognized component of resistance to tyrosine kinase inhibitors (TKI) involves persistence of a drug-tolerant subpopulation of cancer cells that survive despite effective eradication of the majority of the cell population. Multiple groups have demonstrated that these drug-tolerant persister cells undergo transcriptional adaptation via an epigenetic state change that promotes cell survival. Because this mode of TKI drug tolerance appears to involve transcriptional addiction to specific genes and pathways, we hypothesized that systematic functional screening of EGFR TKI/transcriptional inhibitor combination therapy would yield important mechanistic insights and alternative drug escape pathways. We therefore performed a genome-wide CRISPR/Cas9 enhancer/suppressor screen in EGFR-dependent lung cancer PC9 cells treated with erlotinib + THZ1 (CDK7/12 inhibitor) combination therapy, a combination previously shown to suppress drug-tolerant cells in this setting. As expected, suppression of multiple genes associated with transcriptional complexes (EP300, CREBBP, and MED1) enhanced erlotinib/THZ1 synergy. Unexpectedly, we uncovered nearly every component of the recently described ufmylation pathway in the synergy suppressor group. Loss of ufmylation did not affect canonical downstream EGFR signaling. Instead, absence of this pathway triggered a protective unfolded protein response associated with STING upregulation, promoting protumorigenic inflammatory signaling but also unique dependence on Bcl-xL. These data reveal that dysregulation of ufmylation and ER stress comprise a previously unrecognized TKI drug tolerance pathway that engages survival signaling, with potentially important therapeutic implications.Significance: These findings reveal a novel function of the recently described ufmylation pathway, an ER stress survival signaling in drug-tolerant persister cells, which has important biological and therapeutic implications. Cancer Res; 78(4); 1044-57. ©2017 AACR.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Neoplasias Pulmonares/genética , Análisis de Componente Principal/métodos , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Transducción de Señal
19.
Cancer Sci ; 108(9): 1726-1731, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28865172

RESUMEN

The Retinoblastoma (RB) tumor suppressor regulates G1 /S transition during cell cycle progression by modulating the activity of E2F transcription factors. The RB pathway plays a central role in the suppression of most cancers, and RB mutation was initially discovered by virtue of its role in tumor initiation. However, as cancer genome sequencing has evolved to profile more advanced and treatment-resistant cancers, it has become increasingly clear that, in the majority of cancers, somatic RB inactivation occurs during tumor progression. Furthermore, despite the presence of deregulation of cell cycle control due to an INK4A deletion, additional CCND amplification and/or other mutations in the RB pathway, mutation or deletion of the RB gene is often observed during cancer progression. Of note, RB inactivation during cancer progression not only facilitates G1 /S transition but also enhances some characteristics of malignancy, including altered drug sensitivity and a return to the undifferentiated state. Recently, we reported that RB inactivation enhances pro-inflammatory signaling through stimulation of the interleukin-6/STAT3 pathway, which directly promotes various malignant features of cancer cells. In this review, we highlight the consequences of RB inactivation during cancer progression, and discuss the biological and pathological significance of the interaction between RB and pro-inflammatory signaling.


Asunto(s)
Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Proteína de Retinoblastoma/fisiología , Animales , Transformación Celular Neoplásica/metabolismo , Citocinas/metabolismo , Progresión de la Enfermedad , Metabolismo Energético , Genes Supresores de Tumor , Humanos , Inflamación/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Transducción de Señal
20.
Cell Syst ; 5(2): 105-118.e9, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28837809

RESUMEN

The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Genes ras/genética , Genoma , Humanos , Sistema de Señalización de MAP Quinasas , Neoplasias/patología , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA