Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(46): 54073-54084, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944066

RESUMEN

In recent years, transportation-related air pollution has escalated into a global concern, necessitating the development of a three-way catalyst (TWC) technology to address harmful emissions. However, the efficiency of TWC's performance in mitigating these emissions has been hindered because of limited mass transfer efficiency within their structures. Thus, this study attempted to overcome the existing issue by synthesizing a series of macroporous TWC particles exhibiting various macropore sizes via a template-assisted spray process, aiming to achieve optimal mass transfer efficiency and catalytic performance. The synthesis incorporated various template particles (size of 67-381 nm) to obtain various macroporous structures. Thereafter, these macroporous particles were assessed for their carbon monoxide (CO) oxidation performance, revealing a substantial influence of the macropore size on the catalytic performance of TWC structures. Interestingly, among the investigated samples, those containing the smallest and largest macropores demonstrated the highest CO oxidation performances. Based on these results, a plausible reactant diffusion mechanism was proposed to explain the effect of the macropore size on the diffusion efficiency within the macroporous structures. This work may have significant implications in optimizing the macroporous structure to enhance catalytic performance in the gas purification process.

2.
Langmuir ; 39(22): 7783-7792, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37231653

RESUMEN

Mass transfer is an essential process that can extend the performance and utilization of nanoporous materials in various applications. Therefore, improving mass transfer in nanoporous materials has always attracted much interest, and macroporous structures are currently being studied to enhance mass transfer performance. The introduction of macroporous structures into three-way catalysts (TWC), which are widely utilized to control the emission of polluted gases from vehicles, provides the potential to enhance their mass transfer property and catalytic performance. However, the formation mechanism of macroporous TWC particles has not yet been investigated. On the other hand, the influence of the framework thickness of the macroporous structure on the mass transfer enhancement is still unclear. Therefore, this report investigates the particle formation and framework thickness of the macroporous TWC particles synthesized using the template-assisted aerosol process. The formation of macroporous TWC particles was precisely controlled and investigated by altering the size and concentration of the template particles. The template concentration played a crucial role in maintaining the macroporous structure and controlling the framework thickness between the macropores. Based on these results, a theoretical calculation showing the influence of template concentration on the particle morphology and framework thickness was developed. The final results showed that increasing the template concentration can positively affect the nanoporous material's framework thickness reduction and mass transfer coefficient improvement.

3.
Langmuir ; 38(11): 3540-3552, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35258982

RESUMEN

A green synthetic strategy to design biomass-derived porous carbon electrode materials with precisely tailored structure and morphology has always been a challenging goal because these materials can fulfill the demands of next-generation supercapacitors and other electrochemical devices. Potassium hydroxide (KOH) is extensively utilized as an activator since it can produce porous carbon with high specific surface area and well-developed porous channels. The exploitation of sodium hydroxide (NaOH) as an activating agent is less referenced in the literature, although it offers some advantages over KOH in terms of low cost, less corrosiveness, and simple handling procedure, all of which are appealing particularly from an industrial viewpoint. The motivation for this present study is to fabricate porous carbon spheres in a sustainable manner via a spray drying approach followed by a carbonization process, using Kraft lignin as the carbon precursor and NaOH as an alternative activation agent instead of the high-cost and high-corrosive KOH for the first time. The structure of carbon particles can be accurately transitioned from a compact to hollow structure, and the surface textural properties can be easily tuned by altering the NaOH concentration. The obtained porous carbon spheres were applied as highly packed thin film electrode materials for supercapacitor devices. The specific capacitance value of porous carbon spheres with a highly compact structure (high packing density) is 66.5 F g-1, which is higher than that of commercial activated carbon and other biomass-derived carbon. This work provides a green processing for producing low-cost and environment-friendly porous carbon spheres from abundant Kraft lignin and important insight for selecting NaOH as an activator to tailor the morphology and structure, which represents an economical and sustainable approach for energy storage devices.


Asunto(s)
Lignina , Electrodos , Porosidad , Hidróxido de Sodio
4.
J Colloid Interface Sci ; 589: 252-263, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33460856

RESUMEN

The tailored synthesis of carbon particles with controllable shapes and structures from biomass as a raw material would be highly beneficial to meet the demands of various applications of carbon materials from the viewpoint of sustainable development goals. In this work, the spherical carbon particles were successfully synthesized through a spray drying method followed by the carbonization process, using Kraft lignin as the carbon source and potassium hydroxide (KOH) as the activation agent. As the results, the proposed method successfully controlled the shape and structure of the carbon particles from dense to hollow by adjusting the KOH concentration. Especially, this study represents the first demonstration that KOH plays a crucial role in the formation of particles with good sphericity and dense structures. In addition, to obtain an in-depth understanding of the particle formation of carbon particles, a possible mechanism is also investigated in this article. The resulting spherical carbon particles exhibited dense structures with a specific surface area (1233 m2g-1) and tap density (1.46 g cm-3) superior to those of irregular shape carbon particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...