Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 526(3): 654-660, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32248970

RESUMEN

Anaerobic ammonium oxidation (anammox) and denitrification are two different microbial reactions that form nitrogen gas. The initial step in the anammox reaction-reduction of nitrite to nitric oxide-is thought to be catalyzed by homologs of dissimilatory nitrite reductase, which is known to be involved in denitrification. Here, we reveal the crystal structure of the copper-containing nitrite reductase (CuNIR) of strain KSU-1, an anammox bacterium. CuNIR had a unique homohexameric structure with three disulfide bridges between homotrimers, although the trimer was similar to that of known CuNIRs. Kinetic and mutagenesis analyses suggested that the hexameric structure is important for the electron transfer reaction.


Asunto(s)
Proteínas Bacterianas/química , Nitrito Reductasas/química , Planctomycetales/enzimología , Cristalografía por Rayos X , Modelos Moleculares , Planctomycetales/química , Conformación Proteica , Multimerización de Proteína
2.
J Mol Biol ; 430(8): 1189-1200, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29481839

RESUMEN

Anammox is a bacterial energy metabolic process that forms N2 gas from nitrite and ammonium ions. The enzymatic mechanisms of anammox have been gradually revealed; however, the electron transport chain in anammox bacteria remains poorly understood. In the present study, we purified and characterized two low-molecular-weight c-type cytochromes from an enriched culture of the anammox bacterium strain, KSU-1. Their genes, KSU1_B0428 and KSU1_C0855, were identified in the KSU-1 genome, and their recombinant proteins were characterized. KSU1_B0428 is a typical c-type cytochrome with a His/Met coordinated heme, acting as an electron transfer protein. In contrast, KSU1_C0855 could not be assigned as a known cytochrome and its heme was suggested to have an uncommon axial ligand set. Crystal structural analyses of C0855 clearly showed that its heme iron is coordinated by His15 as a fifth ligand. Moreover, the sixth coordination site is occupied by the aromatic ring of Tyr60, and an unassignable electron density that is inseparable with that of aromatic carbon of Tyr60 was found. The additional electron density was assigned to an O atom by molecular mass analyses. Therefore, Tyr60 would be chemically modified to 3,4-dihydroxyphenylalanine and bound to the Fe atom. We revealed that an anammox bacterium strain KSU-1 expresses a novel cytochrome c having an unprecedented His/3,4-dihydroxyphenylalanine coordinating heme. The expression of the novel c-type cytochrome might be required for the redox reaction of the anammox process.


Asunto(s)
Bacterias/metabolismo , Citocromos c/química , Citocromos c/genética , Compuestos de Amonio/metabolismo , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citocromos c/metabolismo , Dihidroxifenilalanina , Transporte de Electrón , Hemo/metabolismo , Modelos Moleculares , Nitritos/metabolismo , Oxidación-Reducción , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...