Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 7(1): 312-321, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30680186

RESUMEN

Skeletal muscle plays a critical role in locomotion and energy metabolism. Maintenance or enhancement of skeletal muscle mass contributes to the improvement of mobility and prevents the development of metabolic diseases. The extracts from Kaempferia parviflora rhizomes contain at least ten methoxyflavone derivatives that exhibit enhancing effects on ATP production and glucose uptake in skeletal muscle cells. In the present study, we investigated the effects of ten K. parviflora-derived methoxyflavone derivatives (six 5,7-dimethoxyflavone (DMF) derivatives and four 5-hydroxy-7-methoxyflavone (HMF) derivatives) on skeletal muscle hypertrophy. Murine C2C12 myotubes and senescence-accelerated mouse-prone 1 (SAMP1) mice treated with methoxyflavones were used as experimental models to determine the effects of HMF derivatives on myotube diameter and size and muscle mass. The four HMF derivatives, but not the six DMF derivatives, increased myotube diameter. The 5-hydroxyflavone, 7-methoxyflavone, and 5,7-dihydroxyflavone had no influence on myotube size, a result that differed from HMF. Dietary administration of the mixture composed of the four HMF derivatives resulted in increase in the soleus muscle size and mass in SAMP1 mice. HMF derivatives also promoted protein synthesis in myotubes, and treatment with the intracellular Ca2+ chelator BAPTA-AM, which depletes intracellular Ca2+ levels, inhibited this promotion. Furthermore, BAPTA-AM inhibited HMF-promoted protein synthesis even when myotubes were incubated in Ca2+-free medium. These results indicate that HMF derivatives induce myotube hypertrophy and that both the 5-hydroxyl group and the 7-methoxy group in the flavones are necessary for myotube hypertrophy. Furthermore, these results suggest that HMF-induced protein synthesis requires intracellular Ca2+, but not extracellular Ca2+.

2.
J Nutr Biochem ; 49: 63-70, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28886438

RESUMEN

Ubiquitin-specific protease 19 (USP19) is a key player in the negative regulation of muscle mass during muscle atrophy. Loss-of-function approaches demonstrate that 17ß-estradiol (E2) increases USP19 expression through estrogen receptor (ER) α and consequently decreases soleus muscle mass in young female mice under physiological conditions. Daidzein is one of the main isoflavones in soy, and activates ERß-dependent transcription. Here, we investigated the effects of daidzein on E2-increased USP19 expression and E2-decreased soleus muscle mass in young female mice. Daidzein stimulated the transcriptional activity of ERß in murine C2C12 cells and down-regulated USP19 expression. Consistently, daidzein inhibited E2-induced USP19 expression in a reporter activity using a functional half-estrogen response element (hERE) from Usp19. Daidzein inhibited E2-induced recruitment of ERα and promoted recruitment of ERß to the Usp19 hERE. Dietary daidzein down-regulated the expression of USP19 at the mRNA and protein levels and increased soleus muscle mass in female mice, but not in males. In soleus muscle from ovariectomized (OVX) female mice, dietary daidzein inhibited E2-increased USP19 mRNA expression and E2-decreased muscle mass. Furthermore, E2 induced the recruitment of ERα and ERß to the hERE, whereas daidzein inhibited E2-induced recruitment of ERα, and enhanced E2-increased recruitment of ERß, to the Usp19 hERE. These results demonstrate that dietary daidzein decreases USP19 mRNA expression through ERß and increases soleus muscle mass in young female mice, but not in male mice, under physiological conditions.


Asunto(s)
Suplementos Dietéticos , Receptor beta de Estrógeno/agonistas , Isoflavonas/uso terapéutico , Músculo Esquelético/metabolismo , Fitoestrógenos/uso terapéutico , Sarcopenia/prevención & control , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Transporte Activo de Núcleo Celular , Animales , Animales no Consanguíneos , Línea Celular , Endopeptidasas , Represión Enzimática , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Genes Reporteros , Masculino , Ratones , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/enzimología , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Ovariectomía/efectos adversos , Distribución Aleatoria , Elementos de Respuesta , Sarcopenia/etiología , Sarcopenia/metabolismo , Sarcopenia/patología , Caracteres Sexuales , Transducción de Señal , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
3.
Biochem Biophys Res Commun ; 478(3): 1292-7, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27553280

RESUMEN

The majority of studies on possible roles for collagen hydrolysates in human health have focused on their effects on bone and skin. Hydroxyprolyl-glycine (Hyp-Gly) was recently identified as a novel collagen hydrolysate-derived dipeptide in human blood. However, any possible health benefits of Hyp-Gly remain unclear. Here, we report the effects of Hyp-Gly on differentiation and hypertrophy of murine skeletal muscle C2C12 cells. Hyp-Gly increased the fusion index, the myotube size, and the expression of the myotube-specific myosin heavy chain (MyHC) and tropomyosin structural proteins. Hyp-Gly increased the phosphorylation of Akt, mTOR, and p70S6K in myoblasts, whereas the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 inhibited their phosphorylation by Hyp-Gly. LY294002 and the mammalian target of rapamycin (mTOR) inhibitor rapamycin repressed the enhancing effects of Hyp-Gly on MyHC and tropomyosin expression. The peptide/histidine transporter 1 (PHT1) was highly expressed in both myoblasts and myotubes, and co-administration of histidine inhibited Hyp-Gly-induced phosphorylation of p70S6K in myoblasts and myotubes. These results indicate that Hyp-Gly can induce myogenic differentiation and myotube hypertrophy and suggest that Hyp-Gly promotes myogenic differentiation by activating the PI3K/Akt/mTOR signaling pathway, perhaps depending on PHT1 for entry into cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Colágeno/farmacología , Dipéptidos/farmacología , Fibras Musculares Esqueléticas/patología , Mioblastos/citología , Animales , Tamaño de la Célula/efectos de los fármacos , Histidina/farmacología , Hipertrofia , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Tropomiosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...