Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(15): 3631-3642, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38578072

RESUMEN

Parallel cascade selection molecular dynamics (PaCS-MD) is an enhanced conformational sampling method conducted as a "repetition of time leaps in parallel worlds", comprising cycles of multiple molecular dynamics (MD) simulations performed in parallel and selection of the initial structures of MDs for the next cycle. We developed PaCS-Toolkit, an optimized software utility enabling the use of different MD software and trajectory analysis tools to facilitate the execution of the PaCS-MD simulation and analyze the obtained trajectories, including the preparation for the subsequent construction of the Markov state model. PaCS-Toolkit is coded with Python, is compatible with various computing environments, and allows for easy customization by editing the configuration file and specifying the MD software and analysis tools to be used. We present the software design of PaCS-Toolkit and demonstrate applications of PaCS-MD variations: original targeted PaCS-MD to peptide folding; rmsdPaCS-MD to protein domain motion; and dissociation PaCS-MD to ligand dissociation from adenosine A2A receptor.


Asunto(s)
Proteínas Portadoras , Simulación de Dinámica Molecular , Conformación Proteica , Programas Informáticos , Dominios Proteicos
2.
J Phys Chem B ; 127(34): 7431-7441, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37562019

RESUMEN

The conformational dynamics of Candida antarctica lipase B (CALB) was investigated by molecular dynamics (MD) simulation, parallel cascade selection MD (PaCS-MD), and the Markov state model (MSM) and mainly focused on the lid-opening motion closely related to substrate binding. All-atom MD simulation of CALB was conducted in water and on the interface of water and tricaprylin. CALB initially situated in water and separated by layers of water from the interface is spontaneously adsorbed onto the tricaprylin surface during MD simulation. The opening and closing motions of the lid are simulated by PaCS-MD, and subsequent MSM analysis provided the free-energy landscape and time scale of the conformational transitions among the closed, semiopen, and open states. The closed state is the most stable in the water system, but the stable conformation in the interface system shifts to the semiopen state. These effects could explain the energetics and kinetics origin of the previously reported interfacial activation of CALB. These findings could help expand the application of CALB toward a wide variety of substrates.

3.
Methods Mol Biol ; 2646: 27-34, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36842103

RESUMEN

Molecular dynamics (MD) simulation and parallel cascade selection molecular dynamics (PaCS-MD) are widely used to investigate large-amplitude motions of proteins. PaCS-MD is an enhanced conformational sampling method consisting of cycles of parallel unbiased MD simulations combined with a selection of MD snapshots as the initial structures for the next cycle. In addition, free energy calculation can be achieved by the combination of PaCS-MD and the Markov state model (MSM). In this chapter, the protocols to investigate the open-close motion of a flagellar export apparatus protein, FlhAC, by MD and the combination of PaCS-MD and MSM are described.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Conformación Proteica , Proteínas/química
4.
Biomater Sci ; 11(4): 1350-1357, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36594419

RESUMEN

Protein crystals can be utilized as porous scaffolds to capture exogenous molecules. Immobilization of target proteins using protein crystals is expected to facilitate X-ray structure analysis of proteins that are difficult to be crystallized. One of the advantages of scaffold-assisted structure determination is the analysis of metastable structures that are not observed in solution. However, efforts to fix target proteins within the pores of scaffold protein crystals have been limited due to the lack of strategies to control protein-protein interactions formed in the crystals. In this study, we analyze the metastable structure of the miniprotein, CLN025, which forms a ß-hairpin structure in solution, using a polyhedra crystal (PhC), an in-cell protein crystal. CLN025 is successfully fixed within the PhC scaffold by replacing the original loop region. X-ray crystal structure analysis and molecular dynamics (MD) simulation reveal that CLN025 is fixed as a helical structure in a metastable state by non-covalent interactions in the scaffold crystal. These results indicate that modulation of intermolecular interactions can trap various protein conformations in the engineered PhC and provides a new strategy for scaffold-assisted structure determination.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Proteínas/química , Conformación Proteica
5.
Biochem Biophys Res Commun ; 631: 78-85, 2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36179499

RESUMEN

Many motile bacteria swim and swarm toward favorable environments using the flagellum, which is rotated by a motor embedded in the inner membrane. The motor is composed of the rotor and the stator, and the motor torque is generated by the change of the interaction between the rotor and the stator induced by the ion flow through the stator. A stator unit consists of two types of membrane proteins termed A and B. Recent cryo-EM studies on the stators from mesophiles revealed that the stator consists of five A and two B subunits, whereas the low-resolution EM analysis showed that purified hyperthermophilic MotA forms a tetramer. To clarify the assembly formation and factors enhancing thermostability of the hyperthermophilic stator, we determined the cryo-EM structure of MotA from Aquifex aeolicus (Aa-MotA), a hyperthermophilic bacterium, at 3.42 Å resolution. Aa-MotA forms a pentamer with pseudo C5 symmetry. A simulated model of the Aa-MotA5MotB2 stator complex resembles the structures of mesophilic stator complexes, suggesting that Aa-MotA can assemble into a pentamer equivalent to the stator complex without MotB. The distribution of hydrophobic residues of MotA pentamers suggests that the extremely hydrophobic nature in the subunit boundary and the transmembrane region is a key factor to stabilize hyperthermophilic Aa-MotA.


Asunto(s)
Proteínas Bacterianas , Flagelos , Archaea/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Flagelos/química , Proteínas de la Membrana/metabolismo , Proteínas Motoras Moleculares/metabolismo
6.
Microbiol Spectr ; 10(4): e0111022, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35876582

RESUMEN

Flagellar structural subunits are transported via the flagellar type III secretion system (fT3SS) and assemble at the distal end of the growing flagellar structure. The C-terminal cytoplasmic domain of FlhA (FlhAC) serves as a docking platform for export substrates and flagellar chaperones and plays an important role in hierarchical protein targeting and export. FlhAC consists of domains D1, D2, D3, and D4 and adopts open and closed conformations. Gly-368 of Salmonella FlhA is located within the highly conserved GYXLI motif and is critical for the dynamic domain motions of FlhAC. However, it remains unclear how it works. Here, we report that periodic conformational changes of the GYXLI motif induce a remodeling of hydrophobic side chain interaction networks in FlhAC and promote the cyclic open-close domain motions of FlhAC. The temperature-sensitive flhA(G368C) mutation stabilized a completely closed conformation at 42°C through strong hydrophobic interactions between Gln-498 of domain D1 and Pro-667 of domain D4 and between Phe-459 of domain D2 and Pro-646 of domain D4, thereby inhibiting flagellar protein export by the fT3SS. Its intragenic suppressor mutations reorganized the hydrophobic interaction networks in the closed FlhAC structure, restoring the protein export activity of the fT3SS to a significant degree. Furthermore, the conformational flexibility of the GYXLI motif was critical for flagellar protein export. We propose that the conserved GYXLI motif acts as a structural switch to induce the dynamic domain motions of FlhAC required for efficient and rapid protein export by the fT3SS. IMPORTANCE Many motile bacteria employ the flagellar type III secretion system (fT3SS) to construct flagella beyond the cytoplasmic membrane. The C-terminal cytoplasmic domain of FlhA (FlhAC), a transmembrane subunit of the fT3SS, provides binding sites for export substrates and flagellar export chaperones to coordinate flagellar protein export with assembly. FlhAC undergoes cyclic open-close domain motions. The highly conserved Gly-368 residue of FlhA is postulated to be critical for dynamic domain motions of FlhAC. However, it remains unknown how it works. Here, we carried out mutational analysis of FlhAC combined with molecular dynamics simulation and provide evidence that the conformational flexibility of FlhAC by Gly-368 is important for remodeling hydrophobic side chain interaction networks in FlhAC to facilitate its cyclic open-close domain motions, allowing the fT3SS to transport flagellar structural subunits for efficient and rapid flagellar assembly.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo III , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Transporte de Proteínas , Sistemas de Secreción Tipo III/metabolismo
7.
J Phys Chem B ; 126(17): 3283-3290, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35467860

RESUMEN

Vibrational energy exchanges between various degrees of freedom are critical to barrier-crossing processes in proteins. Heme proteins are highly suitable for studies of the vibrational energy exchanges in proteins. The migration of excess energy released by heme in a protein moiety can be observed using time-resolved anti-Stokes ultraviolet resonance Raman spectroscopy. The anti-Stokes resonance Raman intensity of a tryptophan residue is an excellent probe for the excess energy and the spatial resolution of a single amino acid residue can be achieved. Here, we studied dependence of vibrational energy transfer on the distance in cytochrome b562, which is a heme-containing, four-helix bundle protein. The vibrational energy transfer from the heme group to a single tryptophan residue introduced by site-directed mutagenesis was examined for different heme-tryptophan distances by a quasi-constant length with the periodicity of α helices. Taken together with structural data obtained by molecular dynamics simulations, the energy transfer could be well described by the model of classical thermal diffusion, which suggests that continuum media provide a good approximation of the protein interior, of which the atomic packing density is very high.


Asunto(s)
Triptófano , Vibración , Transferencia de Energía , Hemo/química , Conformación Proteica en Hélice alfa , Triptófano/química
8.
Sci Rep ; 12(1): 3860, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264667

RESUMEN

Non-structural protein 15 (Nsp15) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) forms a homo hexamer and functions as an endoribonuclease. Here, we propose that Nsp15 activity may be inhibited by preventing its hexamerization through drug binding. We first explored the stable conformation of the Nsp15 monomer as the global free energy minimum conformation in the free energy landscape using a combination of parallel cascade selection molecular dynamics (PaCS-MD) and the Markov state model (MSM), and found that the Nsp15 monomer forms a more open conformation with larger druggable pockets on the surface. Targeting the pockets with high druggability scores, we conducted ligand docking and identified compounds that tightly bind to the Nsp15 monomer. The top poses with Nsp15 were subjected to binding free energy calculations by dissociation PaCS-MD and MSM (dPaCS-MD/MSM), indicating the stability of the complexes. One of the identified pockets, which is distinctively bound by inosine analogues, may be an alternative binding site to stabilize viral RNA binding and/or an alternative catalytic site. We constructed a stable RNA structure model bound to both UTP and alternative binding sites, providing a reasonable proposed model of the Nsp15/RNA complex.


Asunto(s)
Endorribonucleasas/metabolismo , ARN Viral/química , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Antivirales/química , Antivirales/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Endorribonucleasas/antagonistas & inhibidores , Humanos , Cadenas de Markov , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Multimerización de Proteína , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Electricidad Estática , Proteínas no Estructurales Virales/antagonistas & inhibidores
9.
J Chem Inf Model ; 62(5): 1294-1307, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35234033

RESUMEN

p53 is a transcriptional factor that regulates cell response to a variety of stresses. About a half of all human tumors contain p53 mutations, and the accumulation of mutations in the DNA binding domain of p53 (p53-DBD) can cause destabilization of p53 and its complex with DNA. To identify the key residues of the p53-DBD/DNA binding and to understand the dissociation mechanisms of the p53-DBD/DNA complex, the dissociation process of p53-DBD from a DNA duplex that contains the consensus sequence (the specific target of p53-DBD) was investigated by a combination of dissociation parallel cascade selection molecular dynamics (dPaCS-MD) and the Markov state model (MSM). This combination (dPaCS-MD/MSM) enabled us to simulate dissociation of the two large molecules based on an all-atom model with a short simulation time (11.2 ± 2.2 ns per trial) and to analyze dissociation pathways, free energy landscape (FEL), and binding free energy. Among 75 trials of dPaCS-MD, p53-DBD dissociated first from the major groove and then detached from the minor groove in 93% of the cases, while 7% of the cases unbinding from the minor groove occurred first. Minor groove binding is mainly stabilized by R248, identified as the most important residue that tightly binds deep inside the minor groove. The standard binding free energy calculated from the FEL was -10.9 ± 0.4 kcal/mol, which agrees with an experimental value of -11.1 kcal/mol. These results indicate that the dPaCS-MD/MSM combination can be a powerful tool to investigate dissociation mechanisms of two large molecules. Analysis of the p53 key residues for DNA binding indicates high correlations with cancer-related mutations, confirming that impairment of the interactions between p53-DBD and DNA can be frequently related to cancer.


Asunto(s)
Simulación de Dinámica Molecular , Proteína p53 Supresora de Tumor , ADN/química , Humanos , Unión Proteica , Dominios Proteicos , Proteína p53 Supresora de Tumor/química
10.
J Struct Biol ; 213(4): 107792, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34481077

RESUMEN

Half-turns are shown to be the main determinants of many experimental Alzheimer's Aß fibril structures. Fibril structures contain three half-turn types, ßαRß, ßαLß and ß뵧 which each result in a ∼90° bend in a ß-strand. It is shown that only these half-turns enable cross-ß stacking and thus the right-angle fold seen in fibrils is an intrinsic feature of cross-ß. Encoding a strand as a conformational sequence in ß, αR, αL and ε(ßL), pairwise combination rules for consecutive half-turns are used to decode this sequence to give the backbone path. This reveals how structures would be dramatically affected by a deletion. Using a wild-type Aß(42) fibril structure and the pairwise combination rules, the Osaka deletion is predicted to result in exposure of surfaces that are mutually shielding from the solvent. Molecular dynamics simulations on an 11-mer ß-sheet of Alzheimer's Aß(40) of the Dutch (E22Q), Iowa (D23N), Arctic (E22G), and Osaka (E22Δ) mutants, show the crucial role glycine plays in the positioning of ßαRß half-turns. Their "in-phase" positions along the sequence in the wild-type, Dutch mutant and Iowa mutant means that the half-folds all fold to the same side creating the same closed structure. Their out-of-phase positions in Arctic and Osaka mutants creates a flatter structure in the former and an S-shape structure in the latter which, as predicted, exposes surfaces on the inside in the closed wild-type to the outside. This is consistent with the gain of interaction model and indicates how domain swapping might explain the Osaka mutant's unique properties.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Humanos , Enlace de Hidrógeno , Conformación Proteica en Lámina beta , Multimerización de Proteína , Homología de Secuencia de Aminoácido
11.
J Phys Chem B ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34133147

RESUMEN

Signal transduction proteins perceive external stimuli in their sensor module and regulate the biological activities of the effector module, allowing cellular adaptation in response to environmental changes. FixL is a dimeric heme protein kinase that senses the oxygen level in plant root nodules to regulate the transcription of nitrogen fixation genes via the phosphorylation of its cognate transcriptional activator. Dissociation of oxygen from the heme induces conformational changes in the protein, converting it from the inactive form for phosphorylation to the active form. However, how FixL undergoes conformational change to regulate kinase activity upon oxygen dissociation remains poorly understood. Here we report time-resolved ultraviolet resonance Raman spectra showing conformational changes for FixL from Sinorhizobium meliloti. We observed spectral changes with a time constant of about 3 µs, which were oxygen-specific. Furthermore, we found that the conformational changes in the sensor and kinase domains are coupled, enabling allosteric control of kinase activity. Our results demonstrate that concerted structural changes on the microsecond time scale serve as the regulatory switch in FixL.

12.
Sci Rep ; 11(1): 10630, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34017051

RESUMEN

Cell-penetrating peptides have important therapeutic applications in drug delivery, but the variety of known cell-penetrating peptides is still limited. With a promise to accelerate peptide development, artificial intelligence (AI) techniques including deep generative models are currently in spotlight. Scientists, however, are often overwhelmed by an excessive number of unannotated sequences generated by AI and find it difficult to obtain insights to prioritize them for experimental validation. To avoid this pitfall, we leverage molecular dynamics (MD) simulations to obtain mechanistic information to prioritize and understand AI-generated peptides. A mechanistic score of permeability is computed from five steered MD simulations starting from different initial structures predicted by homology modelling. To compensate for variability of predicted structures, the score is computed with sample variance penalization so that a peptide with consistent behaviour is highly evaluated. Our computational pipeline involving deep learning, homology modelling, MD simulations and synthesizability assessment generated 24 novel peptide sequences. The top-scoring peptide showed a consistent pattern of conformational change in all simulations regardless of initial structures. As a result of wet-lab-experiments, our peptide showed better permeability and weaker toxicity in comparison to a clinically used peptide, TAT. Our result demonstrates how MD simulations can support de novo peptide design by providing mechanistic information supplementing statistical inference.


Asunto(s)
Inteligencia Artificial , Péptidos de Penetración Celular/química , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Membrana Celular/química , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Células HeLa , Humanos , Reproducibilidad de los Resultados
13.
Cell ; 184(7): 1884-1894.e14, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33743210

RESUMEN

G-protein-coupled receptors (GPCRs) represent a ubiquitous membrane protein family and are important drug targets. Their diverse signaling pathways are driven by complex pharmacology arising from a conformational ensemble rarely captured by structural methods. Here, fluorine nuclear magnetic resonance spectroscopy (19F NMR) is used to delineate key functional states of the adenosine A2A receptor (A2AR) complexed with heterotrimeric G protein (Gαsß1γ2) in a phospholipid membrane milieu. Analysis of A2AR spectra as a function of ligand, G protein, and nucleotide identifies an ensemble represented by inactive states, a G-protein-bound activation intermediate, and distinct nucleotide-free states associated with either partial- or full-agonist-driven activation. The Gßγ subunit is found to be critical in facilitating ligand-dependent allosteric transmission, as shown by 19F NMR, biochemical, and computational studies. The results provide a mechanistic basis for understanding basal signaling, efficacy, precoupling, and allostery in GPCRs.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/química , Receptor de Adenosina A2A/química , Regulación Alostérica , Sitios de Unión , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Cinética , Ligandos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Nanoestructuras/química , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal
14.
Biophys Physicobiol ; 18: 305-316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178333

RESUMEN

We recently proposed a computational procedure to simulate the dissociation of protein/ligand complexes using the dissociation Parallel Cascade Selection Molecular Dynamics simulation (dPaCS-MD) method and to analyze the generated trajectories using the Markov state model (MSM). This procedure, called dPaCS-MD/MSM, enables calculation of the dissociation free energy profile and the standard binding free energy. To examine whether this method can reproduce experimentally determined binding free energies for a variety of systems, we used it to investigate the dissociation of three protein/ligand complexes: trypsin/benzamine, FKBP/FK506, and adenosine A2 A receptor/T4E. First, dPaCS-MD generated multiple dissociation pathways within a reasonable computational time for all the complexes, although the complexes differed significantly in the size of the molecules and in intermolecular interactions. Subsequent MSM analyses produced free energy profiles for the dissociations, which provided insights into how each ligand dissociates from the protein. The standard binding free energies obtained by dPaCS-MD/MSM are in good agreement with experimental values for all the complexes. We conclude that dPaCS-MD/MSM can accurately calculate the binding free energies of these complexes.

16.
J Cell Sci ; 133(19)2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32878944

RESUMEN

The membrane-shaping ability of PACSIN2 (also known as syndapin II), which is mediated by its F-BAR domain, has been shown to be essential for caveolar morphogenesis, presumably through the shaping of the caveolar neck. Caveolar membranes contain abundant cholesterol. However, the role of cholesterol in PACSIN2-mediated membrane deformation remains unclear. Here, we show that the binding of PACSIN2 to the membrane can be negatively regulated by cholesterol. We prepared reconstituted membranes based on the lipid composition of caveolae. The reconstituted membrane with cholesterol had a weaker affinity for the F-BAR domain of PACSIN2 than a membrane without cholesterol. Consistent with this, upon depletion of cholesterol from the plasma membrane, PACSIN2 localized at tubules that had caveolin-1 at their tips, suggesting that cholesterol inhibits membrane tubulation mediated by PACSIN2. The tubules induced by PACSIN2 could be representative of an intermediate of caveolae endocytosis. Consistent with this, the removal of caveolae from the plasma membrane upon cholesterol depletion was diminished in the PACSIN2-deficient cells. These data suggest that PACSIN2-mediated caveolae internalization is dependent on the amount of cholesterol, providing a mechanism for cholesterol-dependent regulation of caveolae.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Caveolas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Caveolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Endocitosis
17.
J Chem Phys ; 152(22): 225101, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32534517

RESUMEN

We propose edge expansion parallel cascade selection molecular dynamics (eePaCS-MD) as an efficient adaptive conformational sampling method to investigate the large-amplitude motions of proteins without prior knowledge of the conformational transitions. In this method, multiple independent MD simulations are iteratively conducted from initial structures randomly selected from the vertices of a multi-dimensional principal component subspace. This subspace is defined by an ensemble of protein conformations sampled during previous cycles of eePaCS-MD. The edges and vertices of the conformational subspace are determined by solving the "convex hull problem." The sampling efficiency of eePaCS-MD is achieved by intensively repeating MD simulations from the vertex structures, which increases the probability of rare event occurrence to explore new large-amplitude collective motions. The conformational sampling efficiency of eePaCS-MD was assessed by investigating the open-close transitions of glutamine binding protein, maltose/maltodextrin binding protein, and adenylate kinase and comparing the results to those obtained using related methods. In all cases, the open-close transitions were simulated in ∼10 ns of simulation time or less, offering 1-3 orders of magnitude shorter simulation time compared to conventional MD. Furthermore, we show that the combination of eePaCS-MD and accelerated MD can further enhance conformational sampling efficiency, which reduced the total computational cost of observing the open-close transitions by at most 36%.


Asunto(s)
Adenilato Quinasa/química , Proteínas Portadoras/química , Proteínas de Unión a Maltosa/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Cadenas de Markov , Simulación de Dinámica Molecular , Conformación Proteica , Termodinámica
18.
J Chem Theory Comput ; 16(4): 2835-2845, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32192337

RESUMEN

Here, we investigate the association and dissociation mechanisms of a typical intrinsically disordered region (IDR), transcriptional activation subdomain of tumor suppressor protein p53 (TAD-p53), with murine double-minute clone 2 protein (MDM2). Using a combination of cycles of association and dissociation parallel cascade molecular dynamics, multiple standard molecular dynamics (MD), and the Markov state model, we were successful in obtaining the lowest free energy structure of the MDM2/TAD-p53 complex as the structure closest to the crystal structure without prior knowledge of the crystal structure. This method also reproduced the experimentally measured standard binding free energy, and the association and dissociation rate constants, requiring only an accumulated MD simulation cost of 11.675 µs even though that actual dissociation occurs on the order of seconds. We identified few complex intermediates with similar free energies; yet TAD-p53 first binds MDM2 as the second lowest free energy intermediate kinetically with >90% of the flux, adopting a conformation similar to that of one of these few intermediates in its monomeric state. Even though the mechanism of the first step has a conformational-selection-type aspect, the second step shows induced-fit-like features and occurs as concomitant dehydration of the interface, side-chain π-π stacking, and main-chain hydrogen-bond formation to complete binding as an α-helix. In addition, dehydration is a key process for the final relaxation process around the complex interface. These results demonstrate that TAD-p53 kinetically selects its initial binding form and then relaxes to complete the binding.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Proto-Oncogénicas c-mdm2/química , Proteína p53 Supresora de Tumor/química , Cinética , Cadenas de Markov , Simulación de Dinámica Molecular , Unión Proteica
19.
Sci Rep ; 10(1): 2351, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047226

RESUMEN

High pressure below 100 MPa interferes inter-molecular interactions without causing pressure denaturation of proteins. In Escherichia coli, the binding of the chemotaxis signaling protein CheY to the flagellar motor protein FliM induces reversal of the motor rotation. Using molecular dynamics (MD) simulations and parallel cascade selection MD (PaCS-MD), we show that high pressure increases the water density in the first hydration shell of CheY and considerably induces water penetration into the CheY-FliM interface. PaCS-MD enabled us to observe pressure-induced dissociation of the CheY-FliM complex at atomic resolution. Pressure dependence of binding free energy indicates that the increase of pressure from 0.1 to 100 MPa significantly weakens the binding. Using high-pressure microscopy, we observed that high hydrostatic pressure fixes the motor rotation to the counter-clockwise direction. In conclusion, the application of pressure enhances hydration of the proteins and weakens the binding of CheY to FliM, preventing reversal of the flagellar motor.


Asunto(s)
Quimiotaxis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Flagelos/fisiología , Presión , Agua/química , Unión Proteica , Transducción de Señal , Agua/metabolismo
20.
Biochim Biophys Acta Gen Subj ; 1864(2): 129395, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31302180

RESUMEN

BACKGROUND: Molecular dynamics (MD) simulation is well-recognized as a powerful tool to investigate protein structure, function, and thermodynamics. MD simulation is also used to investigate high pressure effects on proteins. For conducting better MD simulation under high pressure, the main issues to be addressed are: (i) protein force fields and water models were originally developed to reproduce experimental properties obtained at ambient pressure; and (ii) the timescale to observe the pressure effect is often much longer than that of conventional MD simulations. SCOPE OF REVIEW: First, we describe recent developments in MD simulation methodologies for studying the high-pressure structure and dynamics of protein molecules. These developments include force fields for proteins and water molecules, and enhanced simulation techniques. Then, we summarize recent studies of MD simulations of proteins in water under high pressure. MAJOR CONCLUSIONS: Recent MD simulations of proteins in solution under pressure have reproduced various phenomena identified by experiments using high pressure, such as hydration, water penetration, conformational change, helix stabilization, and molecular stiffening. GENERAL SIGNIFICANCE: MD simulations demonstrate differences in the properties of proteins and water molecules between ambient and high-pressure conditions. Comparing the results obtained by MD calculations with those obtained experimentally could reveal the mechanism by which biological molecular machines work well in collaboration with water molecules.


Asunto(s)
Simulación de Dinámica Molecular , Presión , Proteínas/química , Termodinámica , Algoritmos , Espectroscopía de Resonancia Magnética , Nucleasa Microcócica/química , Muramidasa/química , Péptidos/química , Conformación Proteica , Solventes/química , Temperatura , Ubiquitina/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA