Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
MAGMA ; 27(1): 63-70, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23748497

RESUMEN

OBJECT: MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development. MATERIALS AND METHODS: MRI of (35)Cl and (23)Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method. RESULTS: T 1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T 1a = 4.8 ms (0.7) T 1b = 24.4 ± 7 ms (0.3) and compared with sodium (T 1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of [Formula: see text] ms and [Formula: see text] ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain. CONCLUSION: The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression.


Asunto(s)
Neoplasias Encefálicas/patología , Cloro/química , Glioma/patología , Imagen por Resonancia Magnética/métodos , Sodio/química , Animales , Progresión de la Enfermedad , Diseño de Equipo , Imagenología Tridimensional , Ratas
2.
J Magn Reson ; 225: 93-101, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23151490

RESUMEN

Stray field imaging (STRAFI) has provided an alternative imaging method to study solid materials that are typically difficult to obtain using conventional MRI methods. For small volume samples, image resolution is a challenge since extremely strong gradients are required to examine narrow slices. Here we present a STRAFI probe for imaging materials with quadrupolar nuclei. Experiments were performed on a 19.6 T magnet which has a fringe field gradient strength of 72 T/m, nearly 50 times stronger than commercial microimagers. We demonstrate the ability to acquire (7)Li 1D profiles of liquid and solid state lithium phantoms with clearly resolved features in the micrometer scale and as a practical example a Li ion battery electrode material is also examined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...