RESUMEN
Cherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-É mRNA induction by LPS or TNF-É compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disorders.
RESUMEN
Skeletal fragility and high fracture rates are common in CKD. A key component of bone loss in CKD with secondary hyperparathyroidism is high bone turnover and cortical bone deterioration through both cortical porosity and cortical thinning. We hypothesized that RANKL drives high bone resorption within cortical bone leading to the development of cortical porosity in CKD (study 1) and that systemic inhibition of RANKL would mitigate the skeletal phenotype of CKD (study 2). In study 1, we assessed the skeletal properties of male and female Dmp1-cre RANKLfl/fl (cKO) and control genotype (Ranklfl/fl; Con) mice after 10 wk of adenine-induced CKD (AD; 0.2% dietary adenine). All AD mice regardless of sex or genotype had elevated blood urea nitrogen and high PTH. Con AD mice in both sexes had cortical porosity and lower cortical thickness as well as high osteoclast-covered trabecular surfaces and higher bone formation rate. cKO mice had preserved cortical bone microarchitecture despite high circulating PTH as well as no CKD-induced increases in osteoclasts. In study 2, male mice with established AD CKD were either given a single injection of an anti-RANKL antibody (5 mg/kg) 8 wk post-induction of CKD or subjected to 3×/wk dosing with risedronate (1.2 µg/kg) for 4 wk. Anti-RANKL treatment significantly reduced bone formation rate as well as osteoclast surfaces at both trabecular and cortical pore surfaces; risedronate treatment had little effect on these bone parameters. In conclusion, these studies demonstrate that bone-specific RANKL is critical for the development of high bone formation/high osteoclasts and cortical bone loss in CKD with high PTH. Additionally, systemic anti-RANKL ligand therapy in established CKD may help prevent the propagation of cortical bone loss via suppression of bone turnover.
RESUMEN
Mouse ligature-induced periodontitis (LIP) has been used to study bone loss in periodontitis. However, the role of osteocytes in LIP remains unclear. Furthermore, there is no consensus on the choice of alveolar bone parameters and time points to evaluate LIP. Here, we investigated the dynamics of changes in osteoclastogenesis and bone volume (BV) loss in LIP over 14 days. Time-course analysis revealed that osteoclast induction peaked on days 3 and 5, followed by the peak of BV loss on day 7. Notably, BV was restored by day 14. The bone formation phase after the bone resorption phase was suggested to be responsible for the recovery of bone loss. Electron microscopy identified bacteria in the osteocyte lacunar space beyond the periodontal ligament (PDL) tissue. We investigated how osteocytes affect bone resorption of LIP and found that mice lacking receptor activator of NF-κB ligand (RANKL), predominantly in osteocytes, protected against bone loss in LIP, whereas recombination activating 1 (RAG1)-deficient mice failed to resist it. These results indicate that T/B cells are dispensable for osteoclast induction in LIP and that RANKL from osteocytes and mature osteoblasts regulates bone resorption by LIP. Remarkably, mice lacking the myeloid differentiation primary response gene 88 (MYD88) did not show protection against LIP-induced bone loss. Instead, osteocytic cells expressed nucleotide-binding oligomerization domain containing 1 (NOD1), and primary osteocytes induced significantly higher Rankl than primary osteoblasts when stimulated with a NOD1 agonist. Taken together, LIP induced both bone resorption and bone formation in a stage-dependent manner, suggesting that the selection of time points is critical for quantifying bone loss in mouse LIP. Pathogenetically, the current study suggests that bacterial activation of osteocytes via NOD1 is involved in the mechanism of osteoclastogenesis in LIP. The NOD1-RANKL axis in osteocytes may be a therapeutic target for bone resorption in periodontitis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
RESUMEN
Calcium/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) regulates bone remodeling through its effects on osteoblasts and osteoclasts. However, its role in osteocytes, the most abundant bone cell type and the master regulator of bone remodeling, remains unknown. Here we report that the conditional deletion of CaMKK2 from osteocytes using Dentine matrix protein 1 (Dmp1)-8kb-Cre mice led to enhanced bone mass only in female mice owing to a suppression of osteoclasts. Conditioned media isolated from female CaMKK2-deficient osteocytes inhibited osteoclast formation and function in in vitro assays, indicating a role for osteocyte-secreted factors. Proteomics analysis revealed significantly higher levels of extracellular calpastatin, a specific inhibitor of calcium-dependent cysteine proteases calpains, in female CaMKK2 null osteocyte conditioned media, compared to media from female control osteocytes. Further, exogenously added non-cell permeable recombinant calpastatin domain I elicited a marked, dose-dependent inhibition of female wild-type osteoclasts and depletion of calpastatin from female CaMKK2-deficient osteocyte conditioned media reversed the inhibition of matrix resorption by osteoclasts. Our findings reveal a novel role for extracellular calpastatin in regulating female osteoclast function and unravel a novel CaMKK2-mediated paracrine mechanism of osteoclast regulation by female osteocytes.
Asunto(s)
Osteoclastos , Osteocitos , Animales , Femenino , Ratones , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Medios de Cultivo Condicionados/farmacología , Osteoclastos/metabolismo , Osteocitos/metabolismo , Caracteres SexualesRESUMEN
BACKGROUND: Type 1 diabetes mellitus (T1DM) and periodontitis have long been thought to be biologically connected. Indeed, T1DM is a risk factor for periodontal disease. With the population of diabetic individuals growing, it is more important than ever to understand the negative consequences of diabetes on the periodontium and the mechanisms. The aim of this study was to find out the early effects of T1DM on the periodontium without any experimentally induced periodontitis. METHODS: We established the streptozotocin (STZ)-induced diabetic mouse model and examined the periodontium 8 weeks later by histology, molecular and cellular assays. Microcomputed tomographic (ðCT) imaging and in vivo fluorochrome labeling were also used to quantify bone volume and mineral apposition rates (MAR). RESULTS: The histologic appearance of epithelium tissue, connective tissue, and periodontal ligament in the diabetic condition was comparable with that of control mice. However, immune cell infiltration in the gingiva was dramatically elevated in the diabetic mice, which was accompanied by unmineralized connective tissue degeneration. Bone resorption activity was significantly increased in the diabetic mice, and quantitative ðCT demonstrated the bone volume, the ratio of bone volume over tissue volume, and cemento-enamel junction to alveolar bone crest (CEJ-ABC) in the diabetic condition were equivalent to those in the control group. In vivo fluorochrome labeling revealed increased MAR and bone remodeling in the diabetic mice. Further investigation found the diabetic mice had more osteoprogenitors recruited to the periodontium, allowing more bone formation to balance the enhanced bone resorption. CONCLUSIONS: STZ-induced T1DM mice, at an early stage, have elevated gingival inflammation and soft tissue degeneration and increased bone resorption; but still the alveolar bone was preserved by recruiting more osteoprogenitor cells and increasing the rate of bone formation. We conclude that inflammation and periodontitis precede alveolar bone deterioration in diabetes.
Asunto(s)
Pérdida de Hueso Alveolar , Resorción Ósea , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Gingivitis , Periodontitis , Ratones , Animales , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Experimental/complicaciones , Colorantes Fluorescentes , Gingivitis/complicaciones , Periodontitis/complicaciones , Proceso Alveolar , Inflamación , Pérdida de Hueso Alveolar/etiologíaRESUMEN
OBJECTIVE: Cherubism is a genetic disorder characterised by bilateral jawbone deformation. The associated jawbone lesions regress after puberty, whereas severe cases require surgical treatment. Although several drugs have been tested, fundamental treatment strategies for cherubism have not been established. The effectiveness of imatinib has recently been reported; however, its pharmaceutical mechanism remains unclear. In this study, we tested the effects of imatinib using a cherubism mouse model. METHODS: We used Sh3bp2 P416R cherubism mutant mice, which exhibit systemic organ inflammation and osteopenia. The effects of imatinib were determined using primary bone marrow-derived macrophages. Imatinib was administered intraperitoneally to the mice, and serum tumour necrosis factor-α (TNFα), organ inflammation and bone properties were examined. RESULTS: The cherubism mutant macrophages produced higher levels of TNFα in response to lipopolysaccharide compared to wild-type macrophages, and imatinib did not significantly suppress TNFα production. Although imatinib suppressed osteoclast formation in vitro, administering it in vivo did not suppress organ inflammation and osteopenia. CONCLUSION: The in vivo administration of imatinib had a minimal therapeutic impact in cherubism mutant mice. To establish better pharmaceutical interventions, it is necessary to integrate new findings from murine models with clinical data from patients with a definitive diagnosis of cherubism.
Asunto(s)
Enfermedades Óseas Metabólicas , Querubismo , Ratones , Animales , Querubismo/tratamiento farmacológico , Querubismo/genética , Factor de Necrosis Tumoral alfa/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Proteínas Adaptadoras Transductoras de Señales/genética , Inflamación/patología , FenotipoRESUMEN
The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.
Asunto(s)
Pérdida de Hueso Alveolar , Osteólisis , Osteomielitis , Periodontitis , Ratones , Animales , Osteocitos/metabolismo , Osteólisis/inducido químicamente , Osteólisis/complicaciones , Osteólisis/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Ligando RANK/metabolismo , Porphyromonas gingivalis/metabolismo , Periodontitis/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Osteoclastos/metabolismoRESUMEN
BACKGROUND: Biofilms protect bacteria from the host immune system and many antibiotics, making the treatment of orthopaedic infections difficult. Halicin, a recently discovered antibiotic, has potent activity against nonorthopaedic infections in mice and the planktonic, free-living forms of many bacterial species, including Staphylococcus aureus , a common cause of orthopaedic infections. Importantly, halicin did not induce resistance in vitro and was effective against drug-resistant bacteria and proliferating and quiescent bacteria. Quiescence is an important cause of antibiotic tolerance in biofilms. However, whether halicin acts on biofilms has not been tested. QUESTIONS/PURPOSES: (1) Does halicin reduce the viability of S. aureus in less mature and more mature biofilms as it does in planktonic cultures? (2) How do the relative effects of halicin on S. aureus biofilms and planktonic cultures compare with those of conventional antibiotics (tobramycin, cefazolin, vancomycin, or rifampicin) that are commonly used in clinical orthopaedic infections? METHODS: To measure minimal biofilm eradication concentrations (MBECs) with less mature 3-day and more mature 7-day biofilms, we used 96-well peg plates that provided high throughput and excellent reproducibility. After S. aureus -Xen36 biofilm formation, planktonic bacteria were removed from the cultures, and the biofilms were exposed to various concentrations of halicin, tobramycin, cefazolin, vancomycin, or rifampicin for 20 hours. Biofilm viability was determined by measuring resazurin reduction or by counting colony-forming units after sonication. To determine effects of halicin and the conventional antibiotics on biofilm viability, we defined MBEC 75 as the lowest concentration that decreased viability by 75% or more. To determine effects on bacterial viability in planktonic cultures, minimum inhibitory concentrations (MICs) were determined with the broth dilution method. Each result was measured in four to 10 independent experiments. RESULTS: We found no differences between halicin's effectiveness against planktonic S. aureus and 3-day biofilms (MIC and MBEC 75 for 3-day biofilms was 25 µM [interquartile range 25 to 25 and 25 to 25, respectively]; p > 0.99). Halicin was eightfold less effective against more mature 7-day biofilms (MBEC 75 = 200 µM [100 to 200]; p < 0.001). Similarly, tobramycin was equally effective against planktonic culture and 3-day biofilms (MIC and MBEC 75 for 3-day biofilms was 20 µM [20 to 20 and 10 to 20, respectively]; p > 0.99). Tobramycin's MBEC 75 against more mature 7-day biofilms was 320 µM (320 to 480), which is 16-fold greater than its planktonic MIC (p = 0.03). In contrast, the MBEC 75 for cefazolin, vancomycin, and rifampicin against more mature 7-day biofilms were more than 1000-fold (> 1000; p < 0.001), 500-fold (500 to 875; p < 0.001), and 3125-fold (3125 to 5469; p = 0.004) greater than their planktonic MICs, respectively, consistent with those antibiotics' relative inactivity against biofilms. CONCLUSION: Halicin was as effective against S. aureus in less mature 3-day biofilms as those in planktonic cultures, but eightfold higher concentrations were needed for more mature 7-day biofilms. Tobramycin, an antibiotic whose effectiveness depends on biofilm maturity, was also as effective against S. aureus in less mature 3-day biofilms as those in planktonic cultures, but 16-fold higher concentrations were needed for more mature 7-day biofilms. In contrast, cefazolin, vancomycin, and rifampicin were substantially less active against both less and more mature biofilms than against planktonic cultures. CLINICAL RELEVANCE: Halicin is a promising antibiotic that may be effective against S. aureus osteomyelitis and infections on orthopaedic implants. Future studies should assess the translational value of halicin by testing its effects in animal models of orthopaedic infections; on the biofilms of other bacterial species, including multidrug-resistant bacteria; and in combination therapy with conventional antibiotics.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Cefazolina/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Reproducibilidad de los Resultados , Rifampin/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Tiadiazoles , Tobramicina/farmacología , Vancomicina/farmacologíaRESUMEN
Osteoclasts are multinucleated cells that exclusively resorb bone matrix proteins and minerals on the bone surface. They differentiate from monocyte/macrophage-lineage cells in the presence of osteoclastogenic cytokines such as the receptor activator of nuclear factor-κB ligand (RANKL) and are stained positive for tartrate-resistant acid phosphatase (TRAP). In vitro, osteoclast formation assays are commonly used to assess the capacity of osteoclast precursor cells for differentiating into osteoclasts wherein the number of TRAP-positive multinucleated cells are counted as osteoclasts. Osteoclasts are manually identified on cell culture dishes by human eyes, which is a labor-intensive process. Moreover, the manual procedure is not objective and result in lack of reproducibility. To accelerate the process and reduce the workload for counting the number of osteoclasts, we developed OC_Finder, a fully automated system for identifying osteoclasts in microscopic images. OC_Finder consists of cell image segmentation with a watershed algorithm and cell classification using deep learning. OC_Finder detected osteoclasts differentiated from wild-type and Sh3bp2KI/+ precursor cells at a 99.4% accuracy for segmentation and at a 98.1% accuracy for classification. The number of osteoclasts classified by OC_Finder was at the same accuracy level with manual counting by a human expert. OC_Finder also showed consistent performance on additional datasets collected with different microscopes with different settings by a different operator. Together, successful development of OC_Finder suggests that deep learning is a useful tool to perform prompt and accurate unbiased classification and detection of specific cell types in microscopic images.
RESUMEN
Cherubism (OMIM#118400) is a craniofacial disorder characterized by destructive jaw expansion. Gain-of-function mutations in SH3-domain binding protein 2 (SH3BP2) are responsible for this rare disorder. We have previously shown that homozygous knock-in (KI) mice (Sh3bp2 KI/KI ) recapitulate human cherubism by developing inflammatory lesions in the jaw. However, it remains unknown why heterozygous KI mice (Sh3bp2 KI/+ ) do not recapitulate the excessive jawbone destruction in human cherubism, even though all mutations are heterozygous in humans. We hypothesized that Sh3bp2 KI/+ mice need to be challenged for developing exacerbated jawbone destruction and that bacterial stimulation in the oral cavity may be involved in the mechanism. In this study, we applied a ligature-induced periodontitis model to Sh3bp2 KI/+ mice to induce inflammatory alveolar bone destruction. Ligature placement induced alveolar bone resorption with gingival inflammation. Quantification of alveolar bone volume revealed that Sh3bp2 KI/+ mice developed more severe bone loss (male: 43.0% ± 10.6%, female: 42.6% ± 10.4%) compared with Sh3bp2 +/+ mice (male: 25.8% ± 4.0%, female: 30.9% ± 6.5%). Measurement of bone loss by the cement-enamel junction-alveolar bone crest distance showed no difference between Sh3bp2 KI/+ and Sh3bp2 +/+ mice. The number of osteoclasts on the alveolar bone surface was higher in male Sh3bp2 KI/+ mice, but not in females, compared with Sh3bp2 +/+ mice. In contrast, inflammatory cytokine levels in gingiva were comparable between Sh3bp2 KI/+ and Sh3bp2 +/+ mice with ligatures. Genetic deletion of the spleen tyrosine kinase in myeloid cells and antibiotic treatment suppressed alveolar bone loss in Sh3bp2 KI/+ mice, suggesting that increased osteoclast differentiation and function mediated by SYK and accumulation of oral bacteria are responsible for the increased alveolar bone loss in Sh3bp2 KI/+ mice with ligature-induced periodontitis. High amounts of oral bacterial load caused by insufficient oral hygiene could be a trigger for the initiation of jawbone destruction in human cherubism. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
RESUMEN
Even though the receptor activator of the nuclear factor-κB ligand (RANKL) and its receptor RANK have an exclusive role in osteoclastogenesis, the possibility of RANKL/RANK-independent osteoclastogenesis has been the subject of a long-standing debate in bone biology. In contrast, it has been reported that calvarial injection of TNF-É elicits significant osteoclastogenesis in the absence of RANKL/RANK in NF-κB2- and RBP-J-deficient mice, suggesting that inflammatory challenges and secondary gene manipulation are the prerequisites for RANKL/RANK-deficient mice to develop osteoclasts in vivo. Here we report that, even in the absence of RANKL (Rankl -/- ), cherubism mice (Sh3bp2 KI/KI ) harboring the homozygous gain-of-function mutation in SH3-domain binding protein 2 (SH3BP2) develop tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts spontaneously. The Sh3bp2 KI/KI Rankl -/- mice exhibit an increase in tooth exposure and a decrease in bone volume/total volume compared to Sh3bp2 +/+ Rankl -/- mice. The multinucleated cells were stained positively for cathepsin K. Osteoclastic marker gene expression in bone and serum TRAP5b levels were elevated in Sh3bp2 KI/KI Rankl -/- mice. Elevation of the serum TNF-É levels suggested that TNF-É is a driver for the RANKL-independent osteoclast formation in Sh3bp2 KI/KI mice. Our results provide a novel mutant model that develops osteoclasts independent of RANKL and establish that the gain-of-function of SH3BP2 promotes osteoclastogenesis not only in the presence of RANKL but also in the absence of RANKL.
RESUMEN
Periodontitis is a bacterially induced chronic inflammatory condition of the oral cavity where tooth-supporting tissues including alveolar bone are destructed. Previously, we have shown that the adaptor protein SH3-domain binding protein 2 (SH3BP2) plays a critical role in inflammatory response and osteoclastogenesis of myeloid lineage cells through spleen tyrosine kinase (SYK). In this study, we show that SH3BP2 is a novel regulator for alveolar bone resorption in periodontitis. Micro-CT analysis of SH3BP2-deficient (Sh3bp2 -/- ) mice challenged with ligature-induced periodontitis revealed that Sh3bp2 -/- mice develop decreased alveolar bone loss (male 14.9% ± 10.2%; female 19.0% ± 6.0%) compared with wild-type control mice (male 25.3% ± 5.8%; female 30.8% ± 5.8%). Lack of SH3BP2 did not change the inflammatory cytokine expression and osteoclast induction. Conditional knockout of SH3BP2 and SYK in myeloid lineage cells with LysM-Cre mice recapitulated the reduced bone loss without affecting both inflammatory cytokine expression and osteoclast induction, suggesting that the SH3BP2-SYK axis plays a key role in regulating alveolar bone loss by mechanisms that regulate the bone-resorbing function of osteoclasts rather than differentiation. Administration of a new SYK inhibitor GS-9973 before or after periodontitis induction reduced bone resorption without affecting inflammatory reaction in gingival tissues. In vitro, GS-9973 treatment of bone marrow-derived M-CSF-dependent macrophages suppressed tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation with decreased mineral resorption capacity even when GS-9973 was added after RANKL stimulation. Thus, the data suggest that SH3BP2-SYK is a novel signaling axis for regulating alveolar bone loss in periodontitis and that SYK can be a potential therapeutic target to suppress alveolar bone resorption in periodontal diseases. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
Asunto(s)
Pérdida de Hueso Alveolar , Osteoclastos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Huesos/metabolismo , Diferenciación Celular , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Fosfatasa Ácida TartratorresistenteRESUMEN
Cherubism is a craniofacial disorder characterized by maxillary and mandibular bone destruction. Gain-of-function mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for the excessive bone resorption caused by fibrous inflammatory lesions. A homozygous knock-in (KI) mouse model for cherubism (Sh3bp2KI/KI ) develops autoinflammation resulting in systemic bone destruction. Although administration of the TNF-α blocker etanercept to neonatal Sh3bp2KI/KI mice prevented the disease onset, this therapy was not effective for adult Sh3bp2KI/KI mice or human cherubism patients who already had lesions. Because genetic ablation of spleen tyrosine kinase (SYK) in myeloid cells rescues Sh3bp2KI/KI mice from inflammation, we examined whether SYK inhibitor administration can improve fully developed cherubism symptoms in adult Sh3bp2KI/KI mice. Entospletinib (GS-9973) was intraperitoneally injected into 10-week-old Sh3bp2KI/KI mice every day for 6 weeks. Treatment with GS-9973 improved facial swelling and histomorphometric analysis of lung and liver tissue showed that GS-9973 administration significantly reduced inflammatory infiltrates associated with decreased levels of serum TNF-α. Micro-computed tomography (µCT) analysis showed that GS-9973 treatment reduced bone erosion in mandibles, calvariae, and ankle and elbow joints of Sh3bp2KI/KI mice compared to Sh3bp2KI/KI mice treated with dimethyl sulfoxide (DMSO). Taken together, the results demonstrate that administration of the SYK inhibitor ameliorates an already established cherubism phenotype in mice, suggesting that pharmacological inhibition of SYK may be a treatment option for cherubism patients with active disease progression. © 2018 American Society for Bone and Mineral Research.
Asunto(s)
Huesos/patología , Querubismo/tratamiento farmacológico , Indazoles/uso terapéutico , Inflamación/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazinas/uso terapéutico , Quinasa Syk/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Huesos/efectos de los fármacos , Querubismo/complicaciones , Modelos Animales de Enfermedad , Indazoles/administración & dosificación , Indazoles/farmacología , Inflamación/complicaciones , Inflamación/patología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/administración & dosificación , Pirazinas/farmacología , Quinasa Syk/metabolismoRESUMEN
Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2KI/KI ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2KI/KI mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2KI/KI mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2KI/KI mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2KI/KI mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2KI/KI mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2KI/KI mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2KI/KI macrophages. In summary, the paradigm that osteoclasts are the exclusive cells executing inflammatory bone destruction may need to be reevaluated based on our findings with c-Fos-deficient cherubism mice lacking osteoclasts. © 2017 American Society for Bone and Mineral Research.
Asunto(s)
Huesos/patología , Querubismo/patología , Inflamación/patología , Macrófagos/patología , Metaloproteinasa 14 de la Matriz/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogénicas c-fos/deficiencia , Fosfatasa Ácida Tartratorresistente/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Articulaciones/efectos de los fármacos , Articulaciones/patología , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , FN-kappa B/metabolismo , Osteoclastos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ligando RANK/deficiencia , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Tankyrase is a poly (ADP-ribose) polymerase that leads to ubiquitination and degradation of target proteins. Since tankyrase inhibitors suppress the degradation of AXIN protein, a negative regulator of the canonical Wnt pathway, they effectively act as Wnt inhibitors. Small molecule tankyrase inhibitors are being investigated as drug candidates for cancer and fibrotic diseases, in which the Wnt pathways are aberrantly activated. Tankyrase is also reported to degrade the adaptor protein SH3BP2 (SH3 domain-binding protein 2). We have previously shown that SH3BP2 gain-of-function mutation enhances receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in murine bone marrow-derived macrophages (BMMs). Although the interaction between tankyrase and SH3BP2 has been reported, it is not clear whether and how the inhibition of tankyrase affects bone cells and bone mass. Here, we have demonstrated that tankyrase inhibitors (IWR-1, XAV939, and G007-LK) enhanced RANKL-induced osteoclast formation and function in murine BMMs and human peripheral blood mononuclear cells through the accumulation of SH3BP2, subsequent phosphorylation of SYK, and nuclear translocation of NFATc1. Tankyrase inhibitors also enhanced osteoblast differentiation and maturation, represented by increased expression of osteoblast-associated genes accompanied by the accumulation of SH3BP2 protein and enhanced nuclear translocation of ABL, TAZ, and Runx2 in primary osteoblasts. Most importantly, pharmacological inhibition of tankyrase in mice significantly decreased tibia and lumbar vertebrae bone volumes in association with increased numbers of osteoclasts. Our findings uncover the role of tankyrase inhibition in bone cells and highlight the potential adverse effects of the inhibitor on bone.
Asunto(s)
Osteoclastos/citología , Tanquirasas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Imidas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Quinolinas/farmacología , Ligando RANK/farmacología , Sulfonas/farmacología , Triazoles/farmacologíaRESUMEN
Drug-induced gingival overgrowth (DIGO) is a side effect of the enlargement of gingival tissue by phenytoin, nifedipine, and cyclosporine A (CsA). Gingival inflammation has been identified as a key factor that initiates DIGO. However, a sufficient animal model for clarifying the role of inflammation in DIGO has not yet been generated. We herein describe a novel CsA-induced gingival overgrowth mouse model to evaluate the role of inflammation. A ligature was placed around the second molar in maxillae for 7days to induce gingival inflammation, and CsA (50mg/kg/day) was administered to mice during each experimental period. The severity of gingival overgrowth and mRNA expression of inflammatory cytokines in gingiva were assessed by the gingival overgrowth degree, histological analyses, and RT-PCR. The administration of CsA for 28days in combination with ligation significantly increased the gingival overgrowth degree and expanded the connective tissue area. Increases in the gingival overgrowth degree continued in a time-dependent manner until 21days. Furthermore, the cessation of CsA reduced gingival overgrowth. Thin ligatures (7-0 size) induced weaker tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 mRNA expression and less gingival overgrowth than thick ligatures (5-0 ligature). Moreover, the administration of an antibiotic cocktail, which suppressed the expression of these inflammatory cytokines in gingiva, attenuated gingival overgrowth induced by ligatures and CsA. These results suggest that inflammation in gingival tissue plays a role in initiating CsA-induced gingival overgrowth. This gingival overgrowth mouse model has potential for elucidating the etiology of DIGO from the view point of gingival inflammation.
Asunto(s)
Ciclosporina/farmacología , Modelos Animales de Enfermedad , Sobrecrecimiento Gingival/terapia , Inflamación/inmunología , Ligadura , Animales , Femenino , Sobrecrecimiento Gingival/inmunología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
We recently demonstrated that brain-derived neurotrophic factor (BDNF) promotes periodontal tissue regeneration. The purpose of this study was to establish an essential component of a rational approach for the clinical application of BDNF in periodontal regenerative therapy. Here, we assessed the sequence of early events in BDNF-induced periodontal tissue regeneration, especially from the aspect of cementum regeneration. Brain-derived neurotrophic factor was applied into experimental periodontal defects in Beagle dogs. The localization of cells positive for neurotrophic tyrosine kinase, receptor, type 2, proliferating cell nuclear antigen, osteopontin, integrin αVß3, and integrin α2ß1 was evaluated by immunohistochemistry. The effects of BDNF on adhesion of cultured human periodontal ligament cells was examined by an in vitro study. The results suggest that BDNF could induce rapid cementum regeneration by stimulating adhesion, proliferation, and differentiation of periodontal ligament cells in the early regenerative phase, resulting in enhancement of periodontal tissue regeneration.
Asunto(s)
Periodoncio , Animales , Factor Neurotrófico Derivado del Encéfalo , Cemento Dental , Perros , Humanos , Ligamento Periodontal , RegeneraciónRESUMEN
BACKGROUND AIMS: The transplantation of mesenchymal stromal cells (MSCs) to damaged tissue has attracted attention in scientific and medical fields as an effective regenerative therapy. Nevertheless, additional studies are required to develop an MSC transplant method for bone regeneration because the use of an artificial scaffold restricts the number of transplanted cells and their function. Furthermore, regulating the degree of cell differentiation in vitro is desirable for a more effective regenerative therapy. To address these unresolved issues, with the use of a self-produced extracellular matrix (ECM), we developed clumps of an MSC/ECM complex (C-MSCs). METHODS: MSCs isolated from rat femur were cultured in growth medium supplemented with 50 µg/mL of ascorbic acid for 7 days. To obtain C-MSCs, confluent cells were scratched with the use of a micropipette tip to roll up the cellular sheet, which consisted of ECM produced by the MSCs. The biological properties of C-MSCs were assessed in vitro and their bone regenerative activity was tested by use of a rat calvarial defect model. RESULTS: Immunofluorescent confocal microscopic analysis revealed that type I collagen formed C-MSCs. Osteopontin messenger RNA expression and amount of calcium content were higher in C-MSCs cultured in osteo-inductive medium than those of untreated C-MSCs. The transplantation of osteogenic-differentiated C-MSCs led to rapid bone regeneration in the rat calvarial defect model. CONCLUSIONS: These results suggest that the use of C-MSCs refined by self-produced ECM, which contain no artificial scaffold and can be processed in vitro, may represent a novel tissue engineering therapy.
Asunto(s)
Regeneración Ósea/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Hueso Parietal/cirugía , Ingeniería de Tejidos/métodos , Animales , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Medios de Cultivo/metabolismo , Matriz Extracelular/metabolismo , Fémur/citología , Masculino , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica/fisiología , Osteogénesis/fisiología , Osteopontina/biosíntesis , Osteopontina/genética , Hueso Parietal/lesiones , Ratas , Ratas Endogámicas F344RESUMEN
Cherubism (OMIM#118400) is a genetic disorder in children characterized by excessive jawbone destruction with proliferation of fibro-osseous lesions containing a large number of osteoclasts. Mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for cherubism. Analysis of the knock-in (KI) mouse model of cherubism showed that homozygous cherubism mice (Sh3bp2(KI/KI)) spontaneously develop systemic autoinflammation and inflammatory bone loss and that cherubism is a TNF-α-dependent hematopoietic disorder. In this study, we investigated whether bone marrow transplantation (BMT) is effective for the treatment of inflammation and bone loss in Sh3bp2(KI/KI) mice. Bone marrow (BM) cells from wild-type (Sh3bp2(+/+)) mice were transplanted to 6-week-old Sh3bp2(KI/KI) mice with developing inflammation and to 10-week-old Sh3bp2(KI/KI) mice with established inflammation. Six-week-old Sh3bp2(KI/KI) mice transplanted with Sh3bp2(+/+) BM cells exhibited improved body weight loss, facial swelling, and survival rate. Inflammatory lesions in the liver and lung as well as bone loss in calvaria and mandibula were ameliorated at 10weeks after BMT compared to Sh3bp2(KI/KI) mice transplanted with Sh3bp2(KI/KI) BM cells. Elevation of serum TNF-α levels was not detected after BMT. BMT was effective for up to 20weeks in 6-week-old Sh3bp2(KI/KI) mice transplanted with Sh3bp2(+/+) BM cells. BMT also ameliorated the inflammation and bone loss in 10-week-old Sh3bp2(KI/KI) mice. Thus our study demonstrates that BMT improves the inflammation and bone loss in cherubism mice. BMT may be effective for the treatment of cherubism patients.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Trasplante de Médula Ósea , Resorción Ósea/patología , Querubismo/patología , Técnicas de Sustitución del Gen , Inflamación/patología , Inflamación/terapia , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Animales , Peso Corporal , Células de la Médula Ósea/metabolismo , Femenino , Inflamación/sangre , Hígado/patología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/sangreRESUMEN
OBJECTIVE: SH3 domain-binding protein 2 (SH3BP2) is a signaling adapter protein that regulates the immune and skeletal systems. The present study was undertaken to investigate the role of SH3BP2 in arthritis using 2 experimental mouse models, i.e., human tumor necrosis factor α-transgenic (hTNF-Tg) mice and mice with collagen-induced arthritis (CIA). METHODS: First, Sh3bp2(-/-) and wild-type (Sh3bp2(+/+) ) mice were crossed with hTNF-Tg mice. Inflammation and bone loss were examined by clinical inspection and histologic and micro-computed tomography analysis, and osteoclastogenesis was evaluated using primary bone marrow-derived macrophage colony-stimulating factor-dependent macrophages (BMMs). Second, CIA was induced in Sh3bp2(-/-) and Sh3bp2(+/+) mice, and the incidence and severity of arthritis were evaluated. Anti-mouse type II collagen (CII) antibody levels were measured by enzyme-linked immunosorbent assay, and lymph node cell responses to CII were determined. RESULTS: SH3BP2 deficiency did not alter the severity of joint swelling but did suppress bone erosion in the hTNF-Tg mouse model. Bone loss at the talus and tibia was prevented in Sh3bp2(-/-) /hTNF-Tg mice compared to Sh3bp2(+/+) /hTNF-Tg mice. RANKL- and TNFα-induced osteoclastogenesis was suppressed in Sh3bp2(-/-) mouse BMM cultures. NF-ATc1 nuclear localization in response to TNFα was decreased in Sh3bp2(-/-) mouse BMMs compared to Sh3bp2(+/+) mouse BMMs. In the CIA model, SH3BP2 deficiency suppressed the incidence of arthritis and this was associated with decreased anti-CII antibody production, while antigen-specific T cell responses in lymph nodes were not significantly different between Sh3bp2(+/+) and Sh3bp2(-/-) mice. CONCLUSION: SH3BP2 deficiency prevents loss of bone via impaired osteoclastogenesis in the hTNF-Tg mouse model and suppresses the induction of arthritis via decreased autoantibody production in the CIA model. Therefore, SH3BP2 could potentially be a therapeutic target in rheumatoid arthritis.