Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Hepatology ; 74(2): 973-986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33872408

RESUMEN

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Asunto(s)
Regeneración Hepática/efectos de los fármacos , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Adulto , Anciano de 80 o más Años , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hepatectomía , Hepatocitos , Humanos , Hígado/fisiología , Hígado/cirugía , Regeneración Hepática/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/administración & dosificación , Cultivo Primario de Células
2.
Sci Rep ; 11(1): 2932, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536534

RESUMEN

Chronic lymphocytic leukaemia (CLL) exhibits variable clinical course and response to therapy, but the molecular basis of this variability remains incompletely understood. Data independent acquisition (DIA)-MS technologies, such as SWATH (Sequential Windowed Acquisition of all THeoretical fragments), provide an opportunity to study the pathophysiology of CLL at the proteome level. Here, a CLL-specific spectral library (7736 proteins) is described alongside an analysis of sample replication and data handling requirements for quantitative SWATH-MS analysis of clinical samples. The analysis was performed on 6 CLL samples, incorporating biological (IGHV mutational status), sample preparation and MS technical replicates. Quantitative information was obtained for 5169 proteins across 54 SWATH-MS acquisitions: the sources of variation and different computational approaches for batch correction were assessed. Functional enrichment analysis of proteins associated with IGHV mutational status showed significant overlap with previous studies based on gene expression profiling. Finally, an approach to perform statistical power analysis in proteomics studies was implemented. This study provides a valuable resource for researchers working on the proteomics of CLL. It also establishes a sound framework for the design of sufficiently powered clinical proteomics studies. Indeed, this study shows that it is possible to derive biologically plausible hypotheses from a relatively small dataset.


Asunto(s)
Variación Biológica Poblacional/genética , Heterogeneidad Genética , Leucemia Linfocítica Crónica de Células B/patología , Proteómica/estadística & datos numéricos , Anciano , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Masculino , Persona de Mediana Edad , Mutación , Proteoma , Receptores de Antígenos de Linfocitos B/genética , Espectrometría de Masas en Tándem
3.
Hepatology ; 70(5): 1732-1749, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31070244

RESUMEN

Idiosyncratic drug-induced liver injury (DILI) is a rare, often difficult-to-predict adverse reaction with complex pathomechanisms. However, it is now evident that certain forms of DILI are immune-mediated and may involve the activation of drug-specific T cells. Exosomes are cell-derived vesicles that carry RNA, lipids, and protein cargo from their cell of origin to distant cells, and they may play a role in immune activation. Herein, primary human hepatocytes were treated with drugs associated with a high incidence of DILI (flucloxacillin, amoxicillin, isoniazid, and nitroso-sulfamethoxazole) to characterize the proteins packaged within exosomes that are subsequently transported to dendritic cells for processing. Exosomes measured between 50 and 100 nm and expressed enriched CD63. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) identified 2,109 proteins, with 608 proteins being quantified across all exosome samples. Data are available through ProteomeXchange with identifier PXD010760. Analysis of gene ontologies revealed that exosomes mirrored whole human liver tissue in terms of the families of proteins present, regardless of drug treatment. However, exosomes from nitroso-sulfamethoxazole-treated hepatocytes selectively packaged a specific subset of proteins. LC/MS-MS also revealed the presence of hepatocyte-derived exosomal proteins covalently modified with amoxicillin, flucloxacillin, and nitroso-sulfamethoxazole. Uptake of exosomes by monocyte-derived dendritic cells occurred silently, mainly through phagocytosis, and was inhibited by latrunculin A. An amoxicillin-modified 9-mer peptide derived from the exosomal transcription factor protein SRY (sex determining region Y)-box 30 activated naïve T cells from human leukocyte antigen A*02:01-positive human donors. Conclusion: This study shows that exosomes have the potential to transmit drug-specific hepatocyte-derived signals to the immune system and provide a pathway for the induction of drug hapten-specific T-cell responses.


Asunto(s)
Células Dendríticas/metabolismo , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Hepatocitos/efectos de los fármacos , Sistema Inmunológico/metabolismo , Transporte de Proteínas , Células Cultivadas , Hepatocitos/ultraestructura , Humanos
5.
Lab Anim ; 53(6): 598-609, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30760081

RESUMEN

Improving outcomes in colorectal cancer requires more accurate in vivo modelling of the disease in humans, allowing more reliable pre-clinical assessment of potential therapies. Novel imaging techniques are necessary to improve the longitudinal assessment of disease burden in these models, reducing the number of animals required for translational studies. This report describes the development of an immune-competent syngeneic orthotopic murine model of colorectal cancer, utilising caecal implantation of CT26 cells stably transfected with the luciferase gene into immune-competent BALB/c mice, allowing serial bioluminescent imaging of cancer progression. Luminescence in the stably transfected CT26 cell line, after pre-conditioning in the flank of a BALB/c mouse, accurately reflected cell viability and resulted in primary caecal tumours in five of eight (63%) mice in the initial pilot study following caecal injection. Luminescent signal continued to increase throughout the study period with one mouse (20%) developing a liver metastasis. Histopathological assessment confirmed tumours to be consistent with a poorly differentiated adenocarcinoma. We have now performed this technique in 68 immune-competent BALB/c mice. There have been no complications from the procedure or peri-operative deaths, with primary tumours developing in 44 (65%) mice and liver metastases in nine (20%) of these. This technique provides an accurate model of colorectal cancer with tumours developing in the correct microenvironment and metastasising to the liver with a similar frequency to that seen in patients presenting with colorectal cancer, with serial bioluminescent reducing the murine numbers required in studies by removing the need for cull for assessment of disease burden.


Asunto(s)
Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Animales , Línea Celular Tumoral , Neoplasias Hepáticas Experimentales/secundario , Masculino , Ratones , Ratones Endogámicos BALB C , Proyectos Piloto , Investigación Biomédica Traslacional
6.
Oncotarget ; 9(43): 27104-27116, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29930754

RESUMEN

Nrf2 is a transcription factor that regulates cellular stress response and irinotecan-metabolising pathways. Its aberrant activity has been reported in a number of cancers, although relatively few studies have explored a role for Nrf2 in colorectal cancer (CRC). This study assessed the expression of Nrf2 in patient CRC tissues and explored the effect of Nrf2 modulation alone, or in combination with irinotecan, in human (HCT116) and murine (CT26) cell lines in vitro and in an orthotopic syngeneic mouse model utilising bioluminescent imaging. Using a tissue microarray, Nrf2 was found to be overexpressed (p<0.01) in primary CRC and metastatic tissue relative to normal colon, with a positive correlation between Nrf2 expression in matched primary and metastatic samples. In vitro experiments in CRC cell lines revealed that Nrf2 siRNA and brusatol, which is known to inhibit Nrf2, decreased viability and sensitised cells to irinotecan toxicity. Furthermore, brusatol effectively abrogated CRC tumour growth in subcutaneously and orthotopically-allografted mice, resulting in an average 8-fold reduction in luminescence at the study end-point (p=0.02). Our results highlight Nrf2 as a promising drug target in the treatment of CRC.

7.
Toxicol In Vitro ; 52: 189-194, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29933103

RESUMEN

Human OATP1B1 is highly expressed at the basolateral membrane of the hepatocyte. It plays an important role in the sodium-independent transport of bile acids and bile salts and contributes to the systemic clearance of many drugs. In this study, the interaction of at least one representative of all major chemical classes of bile acids and bile salts, which include the bile acid chenodeoxycholate (CDC), monovalent (amidated) bile salts glycochenodeoxycholate (GCDC), taurochenodeoxycholate (TCDC) and taurocholate (TC), a sulfated bile acid 3-sulfo-chenodeoxycholate (3S-CDC) and a divalent (amidated and sulfated) bile salt 3-sulfo-glycolithocholate (3S-GLC) were tested with OATP1B1 overexpressed in HEK293 cells. All bile acid derivatives except for CDC showed an efficient transport by OATP1B1. 3S-GLC gave the lowest KM (0.708 ±â€¯0.125 µM) and 3S-CDC showed the highest Vmax value (158 ±â€¯87.3 pmol/mg protein/min). The ranking of Clint values (3S-GLC > 3S-CDC > TCDC > GCDC > TC) also showed a preference for sulfated derivatives. In summary, human OATP1B1 transports sulfate esters of bile acids and bile salts more efficiently than monovalent bile salts.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Células HEK293 , Humanos
9.
Toxicol Appl Pharmacol ; 332: 64-74, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28755860

RESUMEN

The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen , Hígado/efectos de los fármacos , Técnicas Fotoacústicas , Acetilcisteína/administración & dosificación , Alanina Transaminasa/sangre , Animales , Bilirrubina/sangre , Biomarcadores/sangre , Supervivencia Celular/efectos de los fármacos , Glutatión/sangre , Proteína HMGB1/sangre , Hígado/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/sangre
10.
Stem Cells Transl Med ; 6(5): 1321-1331, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28456008

RESUMEN

Drug-induced liver injury is the greatest cause of post-marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this "resetting" is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte- and dermal fibroblast-derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC-derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast-derived iPSCs. We conclude that the donor and inter-clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC-derived HLCs. Stem Cells Translational Medicine 2017;6:1321-1331.


Asunto(s)
Fibroblastos/citología , Fibroblastos/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Epigénesis Genética/genética , Humanos
11.
Arch Toxicol ; 91(1): 439-452, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27039104

RESUMEN

The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hepatocitos/metabolismo , Farmacología/métodos , Proteoma/metabolismo , Toxicología/métodos , Desdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Cinética , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Proteoma/genética , Reproducibilidad de los Resultados , Rotenona/farmacología , Desacopladores/farmacología
12.
Arch Toxicol ; 91(3): 1385-1400, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27344343

RESUMEN

Assessing the potential of a new drug to cause drug-induced liver injury (DILI) is a challenge for the pharmaceutical industry. We therefore determined whether cell models currently used in safety assessment (HepG2, HepaRG, Upcyte and primary human hepatocytes in conjunction with basic but commonly used endpoints) are actually able to distinguish between novel chemical entities (NCEs) with respect to their potential to cause DILI. A panel of thirteen compounds (nine DILI implicated and four non-DILI implicated in man) were selected for our study, which was conducted, for the first time, across multiple laboratories. None of the cell models could distinguish faithfully between DILI and non-DILI compounds. Only when nominal in vitro concentrations were adjusted for in vivo exposure levels were primary human hepatocytes (PHH) found to be the most accurate cell model, closely followed by HepG2. From a practical perspective, this study revealed significant inter-laboratory variation in the response of PHH, HepG2 and Upcyte cells, but not HepaRG cells. This variation was also observed to be compound dependent. Interestingly, differences between donors (hepatocytes), clones (HepG2) and the effect of cryopreservation (HepaRG and hepatocytes) were less important than differences between the cell models per se. In summary, these results demonstrate that basic cell health endpoints will not predict hepatotoxic risk in simple hepatic cells in the absence of pharmacokinetic data and that a multicenter assessment of more sophisticated signals of molecular initiating events is required to determine whether these cells can be incorporated in early safety assessment.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Pruebas de Toxicidad Aguda/métodos , Células Cultivadas , Criopreservación , Células Hep G2/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Reproducibilidad de los Resultados , Pruebas de Toxicidad Aguda/normas
13.
Hepatology ; 65(2): 710-721, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27775817

RESUMEN

Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721).


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Hepatocitos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Pruebas de Toxicidad , Células Cultivadas/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Células Madre Pluripotentes/metabolismo , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad
14.
Toxicol Sci ; 154(1): 5-15, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27492222

RESUMEN

Glutathione (GSH) plays a major role in skin detoxification processes due to its ability to conjugate electrophilic exogenous compounds with, and sometimes without, catalysis by glutathione-s-transferase (GST). GST activity has been demonstrated both in skin and in most in vitro skin equivalents but so far studies have focussed on chemical clearance (conjugate identification and rate of conjugation) and did not consider the GSH lifecycle (conjugation, recycling, synthesis). We used the model skin sensitizer 2,4-dinitrochlorobenzene (DNCB) to investigate the effects of chemical exposure on GSH lifecycle in reconstructed human epidermis (RHE). We demonstrated that the RHE model is suitable to carry out repeated cycles of 2-h exposure to DNCB over a 3-day period. After each exposure to DNCB, the level of GSH is diminished in a dose dependent manner. After a 22-h recovery period, GSH is replenished back to initial levels. Accumulation of the nuclear factor E2-related factor 2 (Nrf2) in the cytosol also occurs within the 2 h of exposure to DNCB but returns to baseline during each recovery period, demonstrating that activation of the Nrf2 signaling pathway offers a rapid response to chemical stress. The amount of dinitrophenyl-glutathione (DNP-SG) formed with DNCB (1) increased between the first and second exposure and (2) reached a plateau between the second and third exposure. Collectively, these data suggest that the metabolic capacity of skin may not be fixed in time but defence mechanisms might be activated in response to exposure to exogenous compounds, resulting in their accelerated clearance.


Asunto(s)
Dinitroclorobenceno/toxicidad , Epidermis/efectos de los fármacos , Glutatión/biosíntesis , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Técnicas de Cultivo de Tejidos
15.
Sci Rep ; 6: 25187, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27143246

RESUMEN

Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/fisiología , Arabinofuranosil Uracilo/análogos & derivados , Arabinofuranosil Uracilo/toxicidad , Células Cultivadas , Humanos , Modelos Biológicos , Prueba de Estudio Conceptual , Proteoma/análisis
16.
J Med Chem ; 59(6): 2396-409, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26908173

RESUMEN

Semisynthetic triterpenoids such as bardoxolone methyl (methyl-2-cyano 3,12-dioxooleano-1,9-dien-28-oate; CDDO-Me) (4) are potent inducers of antioxidant and anti-inflammatory signaling pathways, including those regulated by the transcription factor Nrf2. However, the reversible nature of the interaction between triterpenoids and thiols has hindered attempts to identify pharmacologically relevant targets and characterize the sites of interaction. Here, we report a shortened synthesis and SAR profiling of 4, enabling the design of analogues that react irreversibly with model thiols, as well as the model protein glutathione S-transferase P1, in vitro. We show that one of these analogues, CDDO-epoxide (13), is comparable to 4 in terms of cytotoxicity and potency toward Nrf2 in rat hepatoma cells and stably modifies specific cysteine residues (namely, Cys-257, -273, -288, -434, -489, and -613) within Keap1, the major repressor of Nrf2, both in vitro and in living cells. Supported by molecular modeling, these data demonstrate the value of 13 for identifying site(s) of interaction with pharmacologically relevant targets and informing the continuing development of triterpenoids as novel drug candidates.


Asunto(s)
Antiinflamatorios no Esteroideos , Antioxidantes , Ácido Oleanólico , Animales , Humanos , Ratones , Ratas , Proteínas Adaptadoras Transductoras de Señales/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/síntesis química , Antioxidantes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas del Citoesqueleto/efectos de los fármacos , Diseño de Fármacos , Gutatión-S-Transferasa pi/efectos de los fármacos , Glutatión Transferasa/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Modelos Moleculares , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/síntesis química , Ácido Oleanólico/farmacología , Triterpenos/química , Triterpenos/farmacología , Factor 2 Relacionado con NF-E2
17.
Crit Rev Oncol Hematol ; 98: 94-105, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26558688

RESUMEN

Colorectal cancer (CRC) is the third most common carcinoma worldwide and despite advances in treatment, survival for patients with metastatic disease remains poor. With nearly 50% of patients developing metastases, in vivo investigation is essential to improve outcomes for these patients and numerous murine models of CRC have been developed to allow the study of chemoprevention and chemotherapy, in addition to improving our understanding of the pathogenesis of CRC. Selecting the most appropriate murine model for a specific application will maximize the conversion of potential therapies from the laboratory to clinical practice and requires an understanding of the various models available. This review will provide an overview of the murine models currently used in CRC research, discussing the limitations and merits of each and their most relevant application. It is aimed at the developing researcher, acting as a guide to prompt further reading in planning a specific study.


Asunto(s)
Neoplasias Colorrectales/etiología , Modelos Animales de Enfermedad , Investigación Biomédica Traslacional , Animales , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Masculino , Ratones , Trasplante de Neoplasias
18.
J Pathol ; 238(3): 423-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26497117

RESUMEN

The cellular defence protein Nrf2 is a mediator of oncogenesis in pancreatic ductal adenocarcinoma (PDAC) and other cancers. However, the control of Nrf2 expression and activity in cancer is not fully understood. We previously reported the absence of Keap1, a pivotal regulator of Nrf2, in ∼70% of PDAC cases. Here we describe a novel mechanism whereby the epigenetic regulator UHRF1 suppresses Keap1 protein levels. UHRF1 expression was observed in 20% (5 of 25) of benign pancreatic ducts compared to 86% (114 of 132) of pancreatic tumours, and an inverse relationship between UHRF1 and Keap1 levels in PDAC tumours (n = 124) was apparent (p = 0.002). We also provide evidence that UHRF1-mediated regulation of the Nrf2 pathway contributes to the aggressive behaviour of PDAC. Depletion of UHRF1 from PDAC cells decreased growth and enhanced apoptosis and cell cycle arrest. UHRF1 depletion also led to reduced levels of Nrf2-regulated downstream proteins and was accompanied by heightened oxidative stress, in the form of lower glutathione levels and increased reactive oxygen species. Concomitant depletion of Keap1 and UHRF1 restored Nrf2 levels and reversed cell cycle arrest and the increase in reactive oxygen species. Mechanistically, depletion of UHRF1 reduced global and tumour suppressor promoter methylation in pancreatic cancer cell lines, and KEAP1 gene promoter methylation was reduced in one of three cell lines examined. Thus, methylation of the KEAP1 gene promoter may contribute to the suppression of Keap1 protein levels by UHRF1, although our data suggest that additional mechanisms need to be explored. Finally, we demonstrate that K-Ras drives UHRF1 expression, establishing a novel link between this oncogene and Nrf2-mediated cellular protection. Since UHRF1 over-expression occurs in other cancers, its ability to regulate the Keap1-Nrf2 pathway may be critically important to the malignant behaviour of these cancers.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/etiología , Proteínas Potenciadoras de Unión a CCAAT/deficiencia , Carcinogénesis , Puntos de Control del Ciclo Celular/fisiología , Transformación Celular Neoplásica/patología , Metilación de ADN/fisiología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Estrés Oxidativo/fisiología , Neoplasias Pancreáticas/patología , Transducción de Señal/fisiología , Carga Tumoral , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas
19.
Kidney Int ; 88(6): 1261-1273, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26422507

RESUMEN

The transcription factor Nrf2 exerts protective effects in numerous experimental models of acute kidney injury, and is a promising therapeutic target in chronic kidney disease. To provide a detailed insight into the regulatory roles of Nrf2 in the kidney, we performed integrated transcriptomic and proteomic analyses of kidney tissue from wild-type and Nrf2 knockout mice treated with the Nrf2 inducer methyl-2-cyano-3,12-dioxooleano-1,9-dien-28-oate (CDDO-Me, also known as bardoxolone methyl). After 24 h, analyses identified 2561 transcripts and 240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared with those of wild-type counterparts, and 3122 transcripts and 68 proteins that were differentially expressed in wild-type mice treated with CDDO-Me, compared with those of vehicle control. In the light of their sensitivity to genetic and pharmacological modulation of renal Nrf2 activity, genes/proteins that regulate xenobiotic disposition, redox balance, the intra/extracellular transport of small molecules, and the supply of NADPH and other cellular fuels were found to be positively regulated by Nrf2 in the kidney. This was verified by qPCR, immunoblotting, pathway analysis, and immunohistochemistry. In addition, the levels of NADPH and glutathione were found to be significantly decreased in the kidneys of Nrf2 knockout mice. Thus, Nrf2 regulates genes that coordinate homeostatic processes in the kidney, highlighting its potential as a novel therapeutic target.

20.
Lancet ; 385 Suppl 1: S95, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26312918

RESUMEN

BACKGROUND: Colorectal cancer is the fourth commonest cancer in the UK, and the second commonest cause of cancer-related death. A knowledge of the biological phenotype of colorectal liver metastases would be invaluable to inform clinical decision making; however, deriving this information from the metastatic lesions is not feasible until after resection. We aimed to use proteomic analysis to identify biomarkers in the primary tumour that predict response to neoadjuvant chemotherapy in liver metastases. METHODS: Fresh tissue from both primary colorectal tumour and liver metastases from 17 patients was subjected to proteomic analysis using isobaric tagging for relative quantification. Data were analysed with Protein Pilot (Ab Sciex, Framingham, MA, USA), with stratification of patients into those showing low or high response to chemotherapy permitting the identification of potential predictive biomarkers. These markers were subsequently validated by immunohistochemistry on a tissue microarray of 63 patients. FINDINGS: We identified 5768 discrete proteins. Five of them predicted histopathological response to fluorouracil-based chemotherapy regimens, of which the FAD binding protein NQO1 was subsequently validated by immunohistochemistry. When compared with the chemotherapeutic agent alone, knockdown of the corresponding gene with small interfering RNA decreased cell viability when co-incubated with fluorouracil (77·1% vs 46·6%, p=0·037) and irinotecan (41·7% vs 24·4%, p=0·006). Similar results were also seen after inhibition of protein activity by pretreating cells with dicoumarol. INTERPRETATION: These results show that proteomic sequencing of matched metastatic colorectal cancer samples is feasible, with high protein coverage. The high degree of similarity between the primary and secondary proteomes suggests that primary tissue is predictive of the metastatic phenotype. NQO1 expression in the primary tumour predicts response to neoadjuvant chemotherapy in the liver metastases, and inhibition of this protein at both genetic and functional levels improves chemosensitivity. FUNDING: Cancer Research UK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...