Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2305103120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252967

RESUMEN

HIV-1 relies on host RNA polymeraseII (Pol II) to transcribe its genome and uses multiple transcription start sites (TSS), including three consecutive guanosines located near the U3-R junction, to generate transcripts containing three, two, and one guanosine at the 5' end, referred to as 3G, 2G, and 1G RNA, respectively. The 1G RNA is preferentially selected for packaging, indicating that these 99.9% identical RNAs exhibit functional differences and highlighting the importance of TSS selection. Here, we demonstrate that TSS selection is regulated by sequences between the CATA/TATA box and the beginning of R. Furthermore, we have generated two HIV-1 mutants with distinct 2-nucleotide modifications that predominantly express 3G RNA or 1G RNA. Both mutants can generate infectious viruses and undergo multiple rounds of replication in T cells. However, both mutants exhibit replication defects compared to the wild-type virus. The 3G-RNA-expressing mutant displays an RNA genome-packaging defect and delayed replication kinetics, whereas the 1G-RNA-expressing mutant exhibits reduced Gag expression and a replication fitness defect. Additionally, reversion of the latter mutant is frequently observed, consistent with sequence correction by plus-strand DNA transfer during reverse transcription. These findings demonstrate that HIV-1 maximizes its replication fitness by usurping the TSS heterogeneity of host RNA Pol II to generate unspliced RNAs with different specialized roles in viral replication. The three consecutive guanosines at the junction of U3 and R may also maintain HIV-1 genome integrity during reverse transcription. These studies reveal the intricate regulation of HIV-1 RNA and complex replication strategy.


Asunto(s)
VIH-1 , ARN Polimerasa II , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , VIH-1/fisiología , Sitio de Iniciación de la Transcripción , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral/genética
2.
Viruses ; 14(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35215829

RESUMEN

The HIV-1 nucleocapsid protein (NC) is a multi-functional protein necessary for viral replication. Recent studies have demonstrated reverse transcription occurs inside the fully intact viral capsid and that the timing of reverse transcription and uncoating are correlated. How a nearly 10 kbp viral DNA genome is stably contained within a narrow capsid with diameter similar to the persistence length of double-stranded (ds) DNA, and the role of NC in this process, are not well understood. In this study, we use optical tweezers, fluorescence imaging, and atomic force microscopy to observe NC binding a single long DNA substrate in multiple modes. We find that NC binds and saturates the DNA substrate in a non-specific binding mode that triggers uniform DNA self-attraction, condensing the DNA into a tight globule at a constant force up to 10 pN. When NC is removed from solution, the globule dissipates over time, but specifically-bound NC maintains long-range DNA looping that is less compact but highly stable. Both binding modes are additionally observed using AFM imaging. These results suggest multiple binding modes of NC compact DNA into a conformation compatible with reverse transcription, regulating the genomic pressure on the capsid and preventing premature uncoating.


Asunto(s)
ADN/metabolismo , VIH-1/fisiología , Proteínas de la Nucleocápside/metabolismo , Desencapsidación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , ADN/química , VIH-1/genética , VIH-1/metabolismo , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico , Unión Proteica , Transcripción Reversa , Replicación Viral
3.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34873042

RESUMEN

To generate infectious virus, HIV-1 must package two copies of its full-length RNA into particles. HIV-1 transcription initiates from multiple, neighboring sites, generating RNA species that only differ by a few nucleotides at the 5' end, including those with one (1G) or three (3G) 5' guanosines. Strikingly, 1G RNA is preferentially packaged into virions over 3G RNA. We investigated how HIV-1 distinguishes between these nearly identical RNAs using in-gel chemical probing combined with recently developed computational tools for determining RNA conformational ensembles, as well as cell-based assays to quantify the efficiency of RNA packaging into viral particles. We found that 1G and 3G RNAs fold into distinct structural ensembles. The 1G RNA, but not the 3G RNA, primarily adopts conformations with an intact polyA stem, exposed dimerization initiation site, and multiple, unpaired guanosines known to mediate Gag binding. Furthermore, we identified mutants that exhibited altered genome selectivity and packaged 3G RNA efficiently. In these mutants, both 1G and 3G RNAs fold into similar conformational ensembles, such that they can no longer be distinguished. Our findings demonstrate that polyA stem stability guides RNA-packaging selectivity. These studies also uncover the mechanism by which HIV-1 selects its genome for packaging: 1G RNA is preferentially packaged because it exposes structural elements that promote RNA dimerization and Gag binding.


Asunto(s)
Regiones no Traducidas 5'/fisiología , Genoma Viral , VIH-1/fisiología , ARN Viral/metabolismo , Ensamble de Virus/fisiología , Células HEK293 , Humanos , Sitio de Iniciación de la Transcripción
5.
J Biol Chem ; 295(42): 14391-14401, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817318

RESUMEN

The HIV-1 Gag protein is responsible for genomic RNA (gRNA) packaging and immature viral particle assembly. Although the presence of gRNA in virions is required for viral infectivity, in its absence, Gag can assemble around cellular RNAs and form particles resembling gRNA-containing particles. When gRNA is expressed, it is selectively packaged despite the presence of excess host RNA, but how it is selectively packaged is not understood. Specific recognition of a gRNA packaging signal (Psi) has been proposed to stimulate the efficient nucleation of viral assembly. However, the heterogeneity of Gag-RNA interactions renders capturing this transient nucleation complex using traditional structural biology approaches challenging. Here, we used native MS to investigate RNA binding of wild-type (WT) Gag and Gag lacking the p6 domain (GagΔp6). Both proteins bind to Psi RNA primarily as dimers, but to a control RNA primarily as monomers. The dimeric complexes on Psi RNA require an intact dimer interface within Gag. GagΔp6 binds to Psi RNA with high specificity in vitro and also selectively packages gRNA in particles produced in mammalian cells. These studies provide direct support for the idea that Gag binding to Psi specifically promotes nucleation of Gag-Gag interactions at the early stages of immature viral particle assembly in a p6-independent manner.


Asunto(s)
VIH-1/metabolismo , Secuencia de Empaquetamiento Viral/genética , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Dimerización , Células HEK293 , Humanos , Cinética , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , ARN Viral/química , ARN Viral/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/deficiencia , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
6.
Proc Natl Acad Sci U S A ; 116(21): 10372-10381, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31068467

RESUMEN

The highly conserved 5' untranslated region (5'UTR) of the HIV-1 RNA genome is central to the regulation of virus replication. NMR and biochemical experiments support a model in which the 5'UTR can transition between at least two conformational states. In one state the genome remains a monomer, as the palindromic dimerization initiation site (DIS) is sequestered via base pairing to upstream sequences. In the second state, the DIS is exposed, and the genome is competent for kissing loop dimerization and packaging into assembling virions where an extended dimer is formed. According to this model the conformation of the 5'UTR determines the fate of the genome. In this work, the dynamics of this proposed conformational switch and the factors that regulate it were probed using multiple single-molecule and in-gel ensemble FRET assays. Our results show that the HIV-1 5'UTR intrinsically samples conformations that are stabilized by both viral and host factor binding. Annealing of tRNALys3, the primer for initiation of reverse transcription, can promote the kissing dimer but not the extended dimer. In contrast, HIV-1 nucleocapsid (NC) promotes formation of the extended dimer in both the absence and presence of tRNALys3 Our data are consistent with an ordered series of events that involves primer annealing, genome dimerization, and virion assembly.


Asunto(s)
Regiones no Traducidas 5'/genética , Genoma Viral/genética , VIH-1/genética , ARN Viral/genética , Emparejamiento Base/genética , Dimerización , Genómica/métodos , Conformación de Ácido Nucleico , Nucleocápside/genética , ARN de Transferencia/genética , Virión/genética , Ensamble de Virus/genética , Replicación Viral/genética
7.
Nucleic Acids Res ; 46(16): e98, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29897478

RESUMEN

The recent identification and development of RNA-guided enzymes for programmable cleavage of target nucleic acids offers exciting possibilities for both therapeutic and biotechnological applications. However, critical challenges such as expensive guide RNAs and inability to predict the efficiency of target recognition, especially for highly-structured RNAs, remain to be addressed. Here, we introduce a programmable RNA restriction enzyme, based on a budding yeast Argonaute (AGO), programmed with cost-effective 23-nucleotide (nt) single-stranded DNAs as guides. DNA guides offer the advantage that diverse sequences can be easily designed and purchased, enabling high-throughput screening to identify optimal recognition sites in the target RNA. Using this DNA-induced slicing complex (DISC) programmed with 11 different guide DNAs designed to span the sequence, sites of cleavage were identified in the 352-nt human immunodeficiency virus type 1 5'-untranslated region. This assay, coupled with primer extension and capillary electrophoresis, allows detection and relative quantification of all DISC-cleavage sites simultaneously in a single reaction. Comparison between DISC cleavage and RNase H cleavage reveals that DISC not only cleaves solvent-exposed sites, but also sites that become more accessible upon DISC binding. This study demonstrates the advantages of the DISC system for programmable cleavage of highly-structured, functional RNAs.


Asunto(s)
Proteínas Argonautas/metabolismo , ADN de Cadena Simple/metabolismo , ARN/metabolismo , Ribonucleasas/metabolismo , Regiones no Traducidas 5'/genética , Secuencia de Bases , Sitios de Unión/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , VIH-1/genética , Humanos , Conformación de Ácido Nucleico , ARN/química , ARN/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA