Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769144

RESUMEN

Surfactants are functional molecules utilized in various situations. The self-assembling property of surfactants enables several molecular arrangements that can be employed to build up nanometer-sized architectures. This is beneficial in the construction of functional inorganic-organic hybrids holding the merits of both inorganic and organic components. Among several surfactants, bolaamphiphile surfactants with two hydrophilic heads are effective, as they have multiple connecting or coordinating sites in one molecule. Here, a functional polyoxotungstate inorganic anion was successfully hybridized with a bolaamphiphile to form single crystals with anisotropic one-dimensional alignment of polyoxotungstate. Keggin-type metatungstate ([H2W12O40]6-, H2W12) was employed as an inorganic anion, and 1,12-dodecamethylenediammonium (C12N2) derived from 1,12-dodecanediamine was combined as an organic counterpart. A simple and general ion-exchange reaction provided a hybrid crystal consisting of H2W12 and C12N2 (C12N2-H2W12). Single crystal X-ray structure analyses revealed a characteristic honeycomb structure in the C12N2-H2W12 hybrid crystal, which is possibly effective for the emergence of conductivity due to the dissociative protons of C12N2.


Asunto(s)
Tensoactivos , Conformación Molecular , Tensoactivos/química
2.
Materials (Basel) ; 12(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315228

RESUMEN

Ionic liquids are an important component for constructing functional materials, and polyxometalate cluster anion is a promising partner for building inorganic-organic hybrid materials comprising ionic liquids. In such hybrid materials, the precise control of the molecular arrangement in the bulk structures is crucial for the emergence of characteristic functions, which can be realized by introducing an amphiphilic moiety into the ionic liquids. Here, an amphiphilic polymerizable imidazolium ionic liquid with a methacryloyl group was firstly hybridized with polyoxometalate anions of octamolybdate ([Mo8O26]4-, Mo8) and silicotungstate ([SiW12O40]4-, SiW12) to obtain inorganic-organic hybrid crystals. The polymerizable ionic liquid with a octyl chain (denoted as MAImC8) resulted in the formation of anisotropic molecular arrangements in the bulk crystal structure, which was compared with the hybrid crystals composed from the polymerizable ionic liquid without a long alkyl chain (denoted as MAIm). Rather densely packed isotropic molecular arrangements were observed in the hybrid crystals of MAIm-Mo8 and MAIm-SiW12 due to the lack of the amphiphilic moiety. On the other hand, using the amphiphilic MAImC8 cation gave rise to a honeycomb-like structure with the Mo8 anion and a layered structure with the SiW12 anion, respectively.

3.
Polymers (Basel) ; 9(7)2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30970969

RESUMEN

Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly-conductive solid electrolytes is employing a thermally-stable inorganic component and a structurally-flexible organic moiety to construct inorganic-organic hybrid materials. Ionic liquids as the organic component will be advantageous for the emergence of high conductivity, and polyoxometalate, such as heteropolyacids, are well-known as inorganic proton conductors. Here, newly-designed ionic liquid imidazolium cations, having a polymerizable methacryl group (denoted as MAImC1), were successfully hybridized with heteropolyanions of [PW12O40]3- (PW12) to form inorganic-organic hybrid monomers of MAImC1-PW12. The synthetic procedure of MAImC1-PW12 was a simple ion-exchange reaction, being generally applicable to several polyoxometalates, in principle. MAImC1-PW12 was obtained as single crystals, and its molecular and crystal structures were clearly revealed. Additionally, the hybrid monomer of MAImC1-PW12 was polymerized by a radical polymerization using AIBN as an initiator. Some of the resulting inorganic-organic hybrid polymers exhibited conductivity of 10-4 S·cm-1 order under humidified conditions at 313 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...