Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 112(4): 1116-1130, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31290194

RESUMEN

Inhibition of cell division is critical for viability under DNA-damaging conditions. DNA damage induces the SOS response that in bacteria inhibits cell division while repairs are being made. In coccoids, such as the human pathogen, Staphylococcus aureus, this process remains poorly studied. Here, we identify SosA as the staphylococcal SOS-induced cell division inhibitor. Overproduction of SosA inhibits cell division, while sosA inactivation sensitizes cells to genotoxic stress. SosA is a small, predicted membrane protein with an extracellular C-terminal domain in which point mutation of residues that are conserved in staphylococci and major truncations abolished the inhibitory activity. In contrast, a minor truncation led to SosA accumulation and a strong cell division inhibitory activity, phenotypically similar to expression of wild-type SosA in a CtpA membrane protease mutant. This suggests that the extracellular C-terminus of SosA is required both for cell division inhibition and for turnover of the protein. Microscopy analysis revealed that SosA halts cell division and synchronizes the cell population at a point where division proteins such as FtsZ and EzrA are localized at midcell, and the septum formation is initiated but unable to progress to closure. Thus, our findings show that SosA is central in cell division regulation in staphylococci.


Asunto(s)
División Celular/genética , División Celular/fisiología , Respuesta SOS en Genética/fisiología , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Proteínas de la Membrana/metabolismo , Respuesta SOS en Genética/genética , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
2.
Microbiology (Reading) ; 157(Pt 3): 677-684, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21183573

RESUMEN

The SOS response is governed by the transcriptional regulator LexA and is elicited in many bacterial species in response to DNA damaging conditions. Induction of the SOS response is mediated by autocleavage of the LexA repressor resulting in a C-terminal dimerization domain (CTD) and an N-terminal DNA-binding domain (NTD) known to retain some DNA-binding activity. The proteases responsible for degrading the LexA domains have been identified in Escherichia coli as ClpXP and Lon. Here, we show that in the human and animal pathogen Staphylococcus aureus, the ClpXP and ClpCP proteases contribute to degradation of the NTD and to a lesser degree the CTD. In the absence of the proteolytic subunit, ClpP, or one or both of the Clp ATPases, ClpX and ClpC, the LexA domains were stabilized after autocleavage. Production of a stabilized variant of the NTD interfered with mitomycin-mediated induction of sosA expression while leaving lexA unaffected, and also significantly reduced SOS-induced mutagenesis. Our results show that sequential proteolysis of LexA is conserved in S. aureus and that the NTD may differentially regulate a subset of genes in the SOS regulon.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Regulación Bacteriana de la Expresión Génica , Respuesta SOS en Genética , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Staphylococcus aureus/metabolismo , Animales , Proteínas Bacterianas/genética , Dimerización , Humanos , Mitomicina/farmacología , Estructura Terciaria de Proteína , Serina Endopeptidasas/genética , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
3.
Mol Microbiol ; 73(6): 1058-71, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19682263

RESUMEN

Cytochromes of the c-type function on the outer side of the cytoplasmic membrane in bacteria where they also are assembled from apo-cytochrome polypeptide and haem. Two distinctly different systems for cytochrome c maturation are found in bacteria. System I present in Escherichia coli has eight to nine different Ccm proteins. System II is found in Bacillus subtilis and comprises four proteins: CcdA, ResA, ResB and ResC. ResB and ResC are poorly understood polytopic membrane proteins required for cytochrome c synthesis. We have analysed these two B. subtilis proteins produced in E. coli and in the native organism. ResB is shown to bind protohaem IX and haem is found covalently bound to residue Cys-138. Results in B. subtilis suggest that also ResC can bind haem. Our results complement recent findings made with Helicobacter CcsBA supporting the hypothesis that ResBC as a complex translocates haem by attaching it to ResB on the cytoplasmic side of the membrane and then transferring it to an extra-cytoplasmic location in ResC, from where it is made available to the apo-cytochromes.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Citocromos c/metabolismo , Hemo/metabolismo , Hemoproteínas/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Helicobacter/enzimología , Helicobacter/metabolismo , Proteínas de Unión al Hemo , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Bacteriol ; 189(8): 3063-71, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17293416

RESUMEN

Bacteria use a number of mechanisms for coping with the toxic effects exerted by nitric oxide (NO) and its derivatives. Here we show that the flavohemoglobin encoded by the hmp gene has a vital role in an adaptive response to protect the soil bacterium Bacillus subtilis from nitrosative stress. We further show that nitrosative stress induced by the nitrosonium cation donor sodium nitroprusside (SNP) leads to deactivation of the transcriptional repressor NsrR, resulting in derepression of hmp. Nitrosative stress induces the sigma B-controlled general stress regulon. However, a sigB null mutant did not show increased sensitivity to SNP, suggesting that the sigma B-dependent stress proteins are involved in a nonspecific protection against stress whereas the Hmp flavohemoglobin plays a central role in detoxification. Mutations in the yjbIH operon, which encodes a truncated hemoglobin (YjbI) and a predicted 34-kDa cytosolic protein of unknown function (YjbH), rendered B. subtilis hypersensitive to SNP, suggesting roles in nitrosative stress management.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/fisiología , Hemoproteínas/fisiología , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Adaptación Fisiológica , Proteínas Bacterianas/química , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Genes Reguladores , Análisis por Micromatrices , Peso Molecular , Factor sigma/farmacología , Transcripción Genética
5.
Arch Biochem Biophys ; 457(1): 85-94, 2007 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17126283

RESUMEN

A novel truncated hemoglobin has been identified in the thermophilic bacterium Geobacillus stearothermophilus (Gs-trHb). The protein has been expressed in Escherichia coli, the 3D crystal structure (at 1.5 Angstroms resolution) and the ligand binding properties have been determined. The distal heme pocket displays an array of hydrogen bonding donors to the iron-bound ligands, including Tyr-B10 on one side of the heme pocket and Trp-G8 indole nitrogen on the opposite side. At variance with the highly similar Bacillus subtilis hemoglobin, Gs-trHb is dimeric both in the crystal and in solution and displays several unique structural properties. In the crystal cell, the iron-bound ligand is not homogeneously distributed within each distal site such that oxygen and an acetate anion can be resolved with relative occupancies of 50% each. Accordingly, equilibrium titrations of the oxygenated derivative in solution with acetate anion yield a partially saturated ferric acetate adduct. Moreover, the asymmetric unit contains two subunits and sedimentation velocity ultracentrifugation data confirm that the protein is dimeric.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus stearothermophilus/química , Hemo/química , Hemoglobinas/química , Modelos Moleculares , Acetatos/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Compuestos Férricos/química , Enlace de Hidrógeno , Hierro/química , Ligandos , Datos de Secuencia Molecular , Oxígeno/química , Hemoglobinas Truncadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA