Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1355405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720891

RESUMEN

Introduction: Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results: We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion: The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.


Asunto(s)
Células Supresoras de Origen Mieloide , Sepsis , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Sepsis/inmunología , Transcriptoma , Masculino , Femenino , Diferenciación Celular/inmunología , Perfilación de la Expresión Génica
2.
Shock ; 62(2): 208-216, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713581

RESUMEN

ABSTRACT: Postsepsis early mortality is being replaced by survivors who experience either a rapid recovery and favorable hospital discharge or the development of chronic critical illness with suboptimal outcomes. The underlying immunological response that determines these clinical trajectories remains poorly defined at the transcriptomic level. As classical and nonclassical monocytes are key leukocytes in both the innate and adaptive immune systems, we sought to delineate the transcriptomic response of these cell types. Using single-cell RNA sequencing and pathway analyses, we identified gene expression patterns between these two groups that are consistent with differences in TNF-α production based on clinical outcome. This may provide therapeutic targets for those at risk for chronic critical illness in order to improve their phenotype/endotype, morbidity, and long-term mortality.


Asunto(s)
Monocitos , Sepsis , Transcriptoma , Humanos , Monocitos/metabolismo , Monocitos/inmunología , Sepsis/inmunología , Sepsis/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Factor de Necrosis Tumoral alfa/metabolismo
3.
Biol Direct ; 19(1): 33, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689301

RESUMEN

BACKGROUND: The Advanced Plant Experiment-04 - Epigenetic Expression (APEX-04-EpEx) experiment onboard the International Space Station examined the spaceflight-altered cytosine methylation in two genetic lines of Arabidopsis thaliana, wild-type Col-0 and the mutant elp2-5, which is deficient in an epigenetic regulator Elongator Complex Subunit 2 (ELP2). Whole-genome bisulfite sequencing (WGBS) revealed distinct spaceflight associated methylation differences, presenting the need to explore specific space-altered methylation at single-molecule resolution to associate specific changes over large regions of spaceflight related genes. To date, tools of multiplexed targeted DNA methylation sequencing remain limited for plant genomes. RESULTS: To provide methylation data at single-molecule resolution, Flap-enabled next-generation capture (FENGC), a novel targeted multiplexed DNA capture and enrichment technique allowing cleavage at any specified sites, was applied to survey spaceflight-altered DNA methylation in genic regions of interest. The FENGC capture panel contained 108 targets ranging from 509 to 704 nt within the promoter or gene body regions of gene targets derived from spaceflight whole-genome data sets. In addition to genes with significant changes in expression and average methylation levels between spaceflight and ground control, targets with space-altered distributions of the proportion of methylated cytosines per molecule were identified. Moreover, trends of co-methylation of different cytosine contexts were exhibited in the same DNA molecules. We further identified significant DNA methylation changes in three previously biological process-unknown genes, and loss-of-function mutants of two of these genes (named as EMO1 and EMO2 for ELP2-regulated Methylation in Orbit 1 and 2) showed enhanced root growth rate. CONCLUSIONS: FENGC simplifies and reduces the cost of multiplexed, targeted, single-molecule profiling of methylation in plants, providing additional resolution along each DNA molecule that is not seen in population-based short-read data such as WGBS. This case study has revealed spaceflight-altered regional modification of cytosine methylation occurring within single DNA molecules of cell subpopulations, which were not identified by WGBS. The single-molecule survey by FENGC can lead to identification of novel functional genes. The newly identified EMO1 and EMO2 are root growth regulators which may be epigenetically involved in plant adaptation to spaceflight.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Metilación de ADN , Raíces de Plantas , Vuelo Espacial , Arabidopsis/genética , Raíces de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Epigénesis Genética
4.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R160-R175, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047316

RESUMEN

The effect of exertional heat stroke (EHS) exposure on skeletal muscles is incompletely understood. Muscle weakness is an early symptom of EHS but is not considered a major target of multiorgan injury. Previously, in a preclinical mouse model of EHS, we observed the vulnerability of limb muscles to a second EHS exposure, suggesting hidden processes contributing to declines in muscle resilience. Here, we evaluated the possible molecular origins of EHS-induced declines in muscle resilience. Female C57BL/6 mice [total n = 56; 28/condition, i.e., EHS and exercise control (EXC)] underwent forced wheel running at 37.5°C/40% relative humidity until symptom limitation (unconsciousness). EXC mice exercised identically at room temperature (22-23°C). After 1 mo of recovery, the following were assessed: 1) specific force and caffeine-induced contracture in soleus (SOL) and extensor digitorum longus (EDL) muscles; 2) transcriptome and DNA methylome responses in gastrocnemius (GAST); and 3) primary satellite cell function (proliferation and differentiation). There were no differences in specific force in either SOL or EDL from EXC. Only EHS solei exhibited lower caffeine sensitivity. EHS GAST exhibited higher RNA expression of genes encoding structural proteins of slow fibers, heat shock proteins, and myogenesis. A total of ∼2,500 differentially methylated regions of DNA that could potentially affect many cell functions were identified. Primary satellite cells exhibited suppressed proliferation rates but normal differentiation responses. Results demonstrate long-term changes in skeletal muscles 1 mo after EHS that could contribute to declines in muscle resilience. Skeletal muscle may join other, more recognized tissues considered vulnerable to long-term effects of EHS.NEW & NOTEWORTHY Exertional heat stroke (EHS) in mice induces long-term molecular and functional changes in limb muscle that could reflect a loss of "resilience" to further stress. The phenotype was characterized by altered caffeine sensitivity and suppressed satellite cell proliferative potential. This was accompanied by changes in gene expression and DNA methylation consistent with ongoing muscle remodeling and stress adaptation. We propose that EHS may induce a prolonged vulnerability of skeletal muscle to further stress or injury.


Asunto(s)
Cafeína , Golpe de Calor , Ratones , Femenino , Animales , Actividad Motora , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Golpe de Calor/genética , Transcriptoma , Epigénesis Genética
5.
STAR Protoc ; 4(2): 102279, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37289591

RESUMEN

Chromatin accessibility is regulated by pioneer factors (PFs) and chromatin remodelers (CRs). Here, we present a protocol, based on integrated synthetic oligonucleotide libraries in yeast, to systematically interrogate the nucleosome-displacing activities of PFs and their coordination with CRs. We describe steps for designing oligonucleotide sequences, constructing yeast libraries, measuring nucleosome configurations, and data analyses. This approach potentially can be adapted for use in higher eukaryotes to investigate the activities of many types of chromatin-associated factors. For complete details on the use and execution of this protocol, please refer to Yan et al.,1 and Chen et al.2.

6.
Physiol Genomics ; 54(12): 486-500, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215393

RESUMEN

Evidence from human epidemiological studies suggests that exertional heat stroke (EHS) results in an elevated risk of long-term cardiovascular and systemic disease. Previous results using a preclinical mouse model of EHS demonstrated severe metabolic imbalances in ventricular myocardium developing at 9-14 days of recovery. Whether this resolves over time is unknown. We hypothesized that the long-term effects of EHS on the heart reflect retained maladaptive epigenetic responses. In this study, we evaluated genome-wide DNA methylation, RNA-Seq, and metabolomic profiles of the left ventricular myocardium in female C57BL/6 mice, 30 days after EHS (exercise in 37.5°C; n = 7-8), compared with exercise controls. EHS mice ran to loss of consciousness, reaching core temperatures of 42.4 ± 0.2°C. All mice recovered quickly. After 30 days, the left ventricles were rapidly frozen for DNA methyl sequencing, RNA-Seq, and untargeted metabolomics. Ventricular DNA from EHS mice revealed >13,000 differentially methylated cytosines (DMCs) and >900 differentially methylated regions (DMRs; ≥5 DMCs with ≤300 bp between each CpG). Pathway analysis using DMRs revealed alterations in genes regulating basic cell functions, DNA binding, transcription, and metabolism. Metabolomics and mRNA expression revealed modest changes that are consistent with a return to homeostasis. Methylation status did not predict RNA expression or metabolic state at 30 days. We conclude that EHS induces a sustained DNA methylation memory lasting over 30 days of recovery, but ventricular gene expression and metabolism return to a relative homeostasis at rest. Such long-lasting alterations to the DNA methylation landscape could alter responsiveness to environmental or clinical challenges later in life.


Asunto(s)
Ventrículos Cardíacos , Golpe de Calor , Humanos , Animales , Ratones , Femenino , Ratones Endogámicos C57BL , Golpe de Calor/genética , Golpe de Calor/metabolismo , Miocardio/metabolismo , Epigénesis Genética
7.
Cell Rep ; 40(8): 111250, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001970

RESUMEN

Nucleosome-displacing-factors (NDFs) in yeast, similar to pioneer factors in higher eukaryotes, can open closed chromatin and generate nucleosome-depleted regions (NDRs). NDRs in yeast are also affected by ATP-dependent chromatin remodelers (CRs). However, how NDFs and CRs coordinate in nucleosome invasion and NDR formation is still unclear. Here, we design a high-throughput method to systematically study the interplay between NDFs and CRs. By combining an integrated synthetic oligonucleotide library with DNA methyltransferase-based, single-molecule nucleosome mapping, we measure the impact of CRs on NDRs generated by individual NDFs. We find that CRs are dispensable for nucleosome invasion by NDFs, and they function downstream of NDF binding to modulate the NDR length. A few CRs show high specificity toward certain NDFs; however, in most cases, CRs are recruited in a factor-nonspecific and NDR length-dependent manner. Overall, our study provides a framework to investigate how NDFs and CRs cooperate to regulate chromatin opening.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Front Immunol ; 12: 696536, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484194

RESUMEN

Background: With the successful implementation of the Surviving Sepsis Campaign guidelines, post-sepsis in-hospital mortality to sepsis continues to decrease. Those who acutely survive surgical sepsis will either rapidly recover or develop a chronic critical illness (CCI). CCI is associated with adverse long-term outcomes and 1-year mortality. Although the pathobiology of CCI remains undefined, emerging evidence suggests a post-sepsis state of pathologic myeloid activation, inducing suboptimal lymphopoiesis and erythropoiesis, as well as downstream leukocyte dysfunction. Our goal was to use single-cell RNA sequencing (scRNA-seq) to perform a detailed transcriptomic analysis of lymphoid-derived leukocytes to better understand the pathology of late sepsis. Methods: A mixture of whole blood myeloid-enriched and Ficoll-enriched peripheral blood mononuclear cells from four late septic patients (post-sepsis day 14-21) and five healthy subjects underwent Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq). Results: We identified unique transcriptomic patterns for multiple circulating immune cell subtypes, including B- and CD4+, CD8+, activated CD4+ and activated CD8+ T-lymphocytes, as well as natural killer (NK), NKT, and plasmacytoid dendritic cells in late sepsis patients. Analysis demonstrated that the circulating lymphoid cells maintained a transcriptome reflecting immunosuppression and low-grade inflammation. We also identified transcriptomic differences between patients with bacterial versus fungal sepsis, such as greater expression of cytotoxic genes among CD8+ T-lymphocytes in late bacterial sepsis. Conclusion: Circulating non-myeloid cells display a unique transcriptomic pattern late after sepsis. Non-myeloid leukocytes in particular reveal a host endotype of inflammation, immunosuppression, and dysfunction, suggesting a role for precision medicine-guided immunomodulatory therapy.


Asunto(s)
Infecciones Bacterianas/genética , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Linfocitos/metabolismo , Micosis/genética , RNA-Seq , Sepsis/genética , Análisis de la Célula Individual , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Bacterianas/sangre , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Estudios de Casos y Controles , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Femenino , Humanos , Linfocitos/inmunología , Linfocitos/microbiología , Masculino , Persona de Mediana Edad , Micosis/sangre , Micosis/inmunología , Micosis/microbiología , Fenotipo , Sepsis/sangre , Sepsis/inmunología , Sepsis/microbiología , Factores de Tiempo
9.
Bioinformatics ; 37(24): 4857-4859, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34125875

RESUMEN

SUMMARY: Differential DNA methylation and chromatin accessibility are associated with disease development, particularly cancer. Methods that allow profiling of these epigenetic mechanisms in the same reaction and at the single-molecule or single-cell level continue to emerge. However, a challenge lies in jointly visualizing and analyzing the heterogeneous nature of the data and extracting regulatory insight. Here, we present methylscaper, a visualization framework for simultaneous analysis of DNA methylation and chromatin accessibility landscapes. Methylscaper implements a weighted principal component analysis that orders DNA molecules, each providing a record of the chromatin state of one epiallele, and reveals patterns of nucleosome positioning, transcription factor occupancy, and DNA methylation. We demonstrate methylscaper's utility on a long-read, single-molecule methyltransferase accessibility protocol for individual templates (MAPit-BGS) dataset and a single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) dataset. In comparison to other procedures, methylscaper is able to readily identify chromatin features that are biologically relevant to transcriptional status while scaling to larger datasets. AVAILABILITY AND IMPLEMENTATION: Methylscaper, is implemented in R (version > 4.1) and available on Bioconductor: https://bioconductor.org/packages/methylscaper/, GitHub: https://github.com/rhondabacher/methylscaper/, and Web: https://methylscaper.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Aplicaciones Móviles , Nucleosomas , Metilación de ADN , Cromatina , Epigénesis Genética , ADN
10.
Shock ; 55(5): 587-595, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021571

RESUMEN

BACKGROUND: Increased circulating myeloid-derived suppressor cells (MDSCs) are independently associated with poor long-term clinical outcomes in sepsis. Studies implicate subsets of MDSCs having unique roles in lymphocyte suppression; however, characterization of these cells after sepsis remains incomplete. We performed a pilot study to determine the transcriptomic landscape in MDSC subsets in sepsis using single-cell RNAseq (scRNA-seq). METHODS: A mixture of whole blood myeloid-enriched and Ficoll-enriched PBMCs from two late septic patients on post-sepsis day 21 and two control subjects underwent Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq). RESULTS: We successfully identified the three MDSC subset clusters-granulocytic (G-), monocytic (M-), and early (E-) MDSCs. Sepsis was associated with a greater relative expansion of G-MDSCs versus M-MDSCs at 21 days as compared to control subjects. Genomic analysis between septic patients and control subjects revealed cell-specific and common differential expression of genes in both G-MDSC and M-MDSC subsets. Many of the common genes have previously been associated with MDSC proliferation and immunosuppressive function. Interestingly, there was no differential expression of several genes demonstrated in the literature to be vital to immunosuppression in cancer-induced MDSC. CONCLUSION: This pilot study successfully demonstrated that MDSCs maintain a transcriptomic profile that is immunosuppressive in late sepsis. Interestingly, the landscape in chronic critical illness is partially dependent on the original septic insult. Preliminary data would also indicate immunosuppressive MDSCs from late sepsis patients appear to have a somewhat unique transcriptome from cancer and/or other inflammatory diseases.


Asunto(s)
Células Supresoras de Origen Mieloide , RNA-Seq , Sepsis/genética , Análisis de la Célula Individual , Transcriptoma , Humanos , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...