Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Curr Med Chem ; 10(24): 2669-78, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14529457

RESUMEN

Numerous pathophysiological disorders involve some element of oxidative stress and bioenergetic deficit. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been used recently as a promising new therapeutic strategy aimed at halting the bioenergetic decline associated with oxidative brain insults and other conditions. PARP-1 uses NAD+ as a substrate and is activated during stressful circumstances, mainly in the nucleus. PARP-1 inhibitors are well known for blocking the excessive consumption of NAD+, thereby preserving energy metabolism. But what is the role of mitochondria in this process? Recent investigations have begun to focus on whether mitochondrial function can also be preserved by PARP-1 inhibitors. This review will present some of the latest mechanistic evidence documenting the potential involvement of PARP-1 inhibitors in protecting mitochondrial function and preventing necrosis, apoptosis and mitochondrial calcium cycling.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Mitocondrias/metabolismo , NAD/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Señalización del Calcio , Núcleo Celular/metabolismo , Humanos , Necrosis , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasas/metabolismo
2.
Mini Rev Med Chem ; 2(2): 125-34, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12370074

RESUMEN

Nicotinamide can facilitate DNA repair by inhibiting poly(ADP-ribose) polymerase, increasing NAD levels and adjusting other related enzyme activities. This review will summarize recent work on the design of poly(ADP-ribose) polymerase inhibitors, poly(ADP-ribose) glycohydrolase inhibitors and will discuss the possible use of drugs that interact with NAD synthetic enzymes.


Asunto(s)
Isquemia/tratamiento farmacológico , Niacinamida/química , Niacinamida/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Animales , Humanos , Síndrome MELAS/tratamiento farmacológico , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo
3.
Biochim Biophys Acta ; 1525(1-2): 136-48, 2001 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-11342263

RESUMEN

Pyridine nucleotides are critical during oxidative stress due to their roles in reductive reactions and energetics. The aim of the present study was to examine pyridine nucleotide changes in six brain regions of mice after an intracerebroventricular injection of the oxidative stress inducing agent, t-butyl hydroperoxide (t-BuOOH). A secondary aim was to investigate the correlation between NAD+ levels and DNA fragmentation. Here, we demonstrate that t-BuOOH induced a rapid oxidation of NADPH and a slow depletion of NAD+ in most brain regions. A slight increase in NADH also occurred in five brain regions. NAD+ depletion was associated with increased DNA fragmentation. This suggests the initiation of a death cascade involving poly(ADP-ribose) polymerase (PARP), NAD+, ATP depletion and consequent cell death in brain tissue. PARP activity was accelerated in some brain regions after 20 min of oxidative stress. To counteract oxidative stress induced toxicity, NAD+ levels were increased in the brain using an intraperitoneal injection of nicotinamide. A surplus of brain NAD+ prevented DNA fragmentation in some brain regions. Nicotinamide administration also resulted in higher brain NADH, NADP+ and NADPH levels in some regions. Their synthesis was further upregulated during oxidative stress. Nicotinamide as a precursor for NAD+ may provide a useful therapeutic strategy in the treatment of neurodegeneration.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Niacinamida/farmacología , Nucleótidos de Purina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Fragmentación del ADN , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Poli(ADP-Ribosa) Polimerasas/metabolismo , terc-Butilhidroperóxido/toxicidad
4.
Curr Top Med Chem ; 1(6): 473-82, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11895124

RESUMEN

Oxidative stress occurs in the brain due to stroke, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, trauma, aging and other conditions. Analysis of the effects of oxidative stress can involve quantitation of brain GSH, GSSG, NADPH and NADP. Reliable and rapid assays have been developed for these compounds and will be presented in detail. The assays have been used to analyze the effects of brain oxidative stress. Thermodynamic calculations can be performed to find the observed electrochemical potentials of the GSSG/GSH and the NADP/NADPH couples during oxidative stress. The biochemical consequences of these thermodynamic changes in the cell will be discussed as well as the defense mechanisms available to the cell to recover from oxidative stress.


Asunto(s)
Encéfalo/metabolismo , Estrés Oxidativo , Animales , Encéfalo/anatomía & histología , Química Encefálica , Técnicas de Química Analítica , Glutatión/análisis , Glutatión/metabolismo , Humanos , NADP/análisis , NADP/metabolismo , Oxidación-Reducción , Termodinámica
5.
Eur J Pharmacol ; 330(1): 27-34, 1997 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-9228411

RESUMEN

Apoptosis is a characteristic form of cell death which has been implicated in neurodegeneration. In this study we document the induction of apoptosis and DNA fragmentation in vivo by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin. MPTP selectively damages dopaminergic neurons in the substantia nigra of the midbrain. It is a potent inducer of oxygen radicals. Nicotinamide, a precursor of NAD, is able to block the apoptosis induced by MPTP. Nicotinamide also quenches some of the radicals formed by xanthine oxidase. Nicotinamide may be of interest in the treatment of neurodegeneration.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo/enzimología , NAD/fisiología , Neuronas/efectos de los fármacos , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , Niacinamida/farmacología , Sustancia Negra/citología , Sustancia Negra/enzimología
6.
Mol Chem Neuropathol ; 30(3): 187-97, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9165485

RESUMEN

Glutathione (GSH) synthetase activities and GSH turnover rates were examined during severe oxidative stress in the mouse brain as induced by t-butylhydroperoxide (t-BuOOH). Brain GSH synthetase activities in 8-mo-old mice in the cortex, striatum, thalamus, hippocampus, midbrain, and cerebellum were found to increase following t-BuOOH treatment. The effect of GSH synthesis on brain GSH turnover rates for 2- and 8-mo-old mice were determined after intracerebroventricular (icv) injection of [35S]cysteine. Rate constants for GSH turnover were determined by least-squares iterative minimization from the specific activity data from 20 min to 108 h after [35S]cysteine administration. GSH and glutathione disulfide (GSSG) specific activities were determined after separation by high-pressure liquid chromatography (HPLC). The half-life of GSH in the 2-mo-old mouse was 59.5 h and in the 8-mo-old mouse was 79.1 h. In summary, defense mechanisms against oxidative stress in the brain differ with age. Young mice can increase the cellular availability of GSH, whereas mature mice can increase GSH synthetase activity during oxidative stress. These differences make mature mice more susceptible to brain oxidative damage.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Glutatión/metabolismo , Estrés Oxidativo/fisiología , Animales , Encéfalo/enzimología , Glutatión Sintasa/metabolismo , Masculino , Ratones , Ratones Endogámicos , Radioisótopos de Azufre/metabolismo , Factores de Tiempo
7.
Redox Rep ; 3(5-6): 273-9, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9754325

RESUMEN

A new mechanism of oxygen radical formation in dopaminergic neurons is proposed, based on the oxidative mechanism of tyrosine hydroxylase. The cofactor (6R,6S)-5,6,7,8-tetrahydrobiopterin can rearrange in solution which allows an autoxidation reaction producing O2.-, H2O2 and HO.. The combination of tyrosine hydroxylase and the cofactor produces more oxygen radicals than does the autoxidation of the cofactor. This production of oxygen radicals could be damaging to dopaminergic neurons. In the presence of tyrosine, the enzyme produces less radicals than it does in the absence of tyrosine. Mechanisms are proposed for the generation of reactive oxygen species during the autoxidation of the cofactor and during enzymatic catalysis. The generation, by tyrosine hydroxylase, of very small amounts of oxygen radicals over the period of 65 years could contribute to the oxidative stress that causes Parkinson's disease.


Asunto(s)
Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Antioxidantes/química , Antioxidantes/metabolismo , Biopterinas/análogos & derivados , Biopterinas/química , Biopterinas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/metabolismo , Peróxido de Hidrógeno/metabolismo , Radical Hidroxilo/metabolismo , Levodopa/metabolismo , Oxidación-Reducción , Células PC12 , Ratas , Proteínas Recombinantes/metabolismo , Superóxidos/metabolismo
8.
Ann N Y Acad Sci ; 786: 135-51, 1996 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-8687015

RESUMEN

DNA is a primary site of damage during oxidative stress in the brain. DNA fragmentation occurs within minutes of induction of oxidative stress. This DNA fragmentation probably results from the attack of free radicals on DNA and from the activation of endonucleases. Oxidative stress was induced by intracerebroventricular injection of t-butylhydroperoxide. This results in a very rapid flux of t-butylhydroperoxide, which is cleared from the brain within minutes. This flux of t-butylhydroperoxide results in the formation of hydroxyl radical in the brain and probably in the nuclei of brain cells. Necrosis results from extensive DNA fragmentation caused by massive oxidative stress. Cresyl violet stained brain sections demonstrated necrosis in many brain regions. In addition, previous electron microscopy studies showed degradation of cellular nuclei caused by tBuOOH toxicity. Low doses of t-butylhydroperoxide can induce apoptosis, which is a delayed form of cell death. Apoptosis was found in brains stained to visualize apoptotic DNA fragments. Experiments performed in mice aged 2, 8 or 24 months will be discussed. We have also found that apoptosis and DNA fragmentation can be prevented by pretreating mice with the vitamin micotinamide. Nicotinamide is a precursor for NAD. DNA repair requires high levels of NAD in the nucleus for the activity of poly(ADP-ribose) polymerase. Oxidative stress in the brain produces both necrosis and apoptosis, probably as the result of DNA fragmentation. Senescence is associated with an increase in the production of DNA fragments during brain oxidative stress, which probably leads to more necrosis and apoptosis than in younger mice.


Asunto(s)
Envejecimiento/metabolismo , Apoptosis , Encéfalo/metabolismo , Estrés Oxidativo , Animales , Corteza Cerebral/metabolismo , ADN/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Tálamo/metabolismo
9.
Neurosci Lett ; 206(1): 5-8, 1996 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-8848280

RESUMEN

The vitamin nicotinamide can protect against oxidative stress-induced apoptosis in the brain when used as a precursor for nicotinamide adenine dinucleotide (NAD+). The intracerebroventricular administration of tertiary-butylhydroperoxide (t-buOOH) to mice was used to simulate physiologic oxidative stress and apoptosis which may occur in some neurodegenerative conditions. t-buOOH produced characteristic apoptotic nuclear degeneration in neurons with extensive fragmentation of DNA. In this report we show that the elevation of NAD+ by nicotinamide prevents DNA fragmentation during apoptosis or necrosis in the brain as stimulated by t-buOOH administration. NAD+ levels can be increased by 50% in the brain. This may prevent the critical depletion of NAD+ by poly(ADP-ribose) polymerase (PARP) and provide additional substrate during the repair of DNA. Nicotinamide may be of particular interest in the treatment of neurodegeneration.


Asunto(s)
Apoptosis/efectos de los fármacos , Encéfalo/citología , NAD/metabolismo , Niacinamida/farmacología , Peróxidos/antagonistas & inhibidores , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , ADN/metabolismo , Reparación del ADN , Inmunohistoquímica , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/efectos de los fármacos , Niacinamida/metabolismo , Estrés Oxidativo , Peróxidos/administración & dosificación , Peróxidos/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , terc-Butilhidroperóxido
10.
Environ Toxicol Pharmacol ; 1(1): 45-9, 1996 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21781662

RESUMEN

Rats were fed with diets containing differing amounts of α-tocopherol for 21 days. For the latter 14 days of this period, one half of the rats also received ethanol (7% v/v) in the drinking water. Treatments did not alter the rate of weight gain between groups. Hepatic glutathione levels were depressed by ethanol treatment in rats receiving diets deficient in α-tocopherol or containing normal levels of the vitamin (50 ppm). However, this depression was not found in rats maintained on a high α-tocopherol diet (1000 ppm). The high α-tocopherol diet also prevented the ethanol-induced inhibition of proteolytic activity within the liver. A dose-dependent reduction of rates of hepatic generation of reactive oxygen species was effected by this vitamin. Within the central nervous system, the only region showing an ethanol-induced lowering of glutathione levels, was the midbrain of rats receiving the α-tocopherol deficient diet.

11.
Anal Biochem ; 228(2): 312-7, 1995 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-8572312

RESUMEN

An ultrasensitive HPLC method has been developed for measuring NADP+, NADPH, NAD+, and NADH. A simple, rapid reaction of the oxidized nucleotides with cyanide in basic solution leads to two stable fluorescent products and allows all four nucleotides to be separated and quantitated on one chromatogram. Furthermore, only one extraction is needed, rather than prior procedures which require one acid extraction (for oxidized species) and one basic extraction (for reduced species). This method is particularly useful in quantitating pyridine dinucleotides in rodent brain, where no current method is adequate to quantitate the small amounts contained in various brain regions. The assay is sensitive enough to measure individual brain regions down to 10 mg of tissue. Due to the involvement of NAD(P)H enzymatic systems in combating oxidative stress it is important to be able to assess levels regionally in brain diseases.


Asunto(s)
Química Encefálica/fisiología , Cromatografía Líquida de Alta Presión , NADP/análisis , NAD/análisis , Animales , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Estándares de Referencia , Sensibilidad y Especificidad , Espectrometría de Fluorescencia
12.
Brain Res Bull ; 38(6): 595-604, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-8590084

RESUMEN

In this study, the effect of intracerebroventricular administration of the free radical generator, tertiary butylhydroperoxide, on DNA, was quantitated. Previous studies had established DNA as a very important site of free radical attack. The purpose of the study was to detect whether DNA was one of the primary targets of the toxin as well as to detect any apoptosis that may have been induced by the toxin. The DNA fragmentation assay clearly showed DNA damage within 20 min of administration of 109.7 mg/kg t-BuOOH almost in all brain regions in both 2-month and 8-month-old C57BL/6 mice. In Situ Apoptosis Detection assay, where brain sections were stained with Apoptag, demonstrated that t-BuOOH induces apoptosis in many brain regions. Electron microscopy was done to show nuclear damage and DNA fragments appearing in the cytoplasm. Cresyl violet staining was done to show that while low dose (21.9 mg/kg) t-BuOOH induces apoptosis, it may also induce necrosis in other cells of the same brain region. Thus, from this study we can conclude that DNA may be one of the primary target sites of free radical attack in the brain, and results in both necrosis and apoptosis. This can have a profound effect on neurodegeneration.


Asunto(s)
Apoptosis , Encéfalo/efectos de los fármacos , ADN/efectos de los fármacos , Peróxidos/farmacología , Animales , Radicales Libres/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiopatología , Ratones , Ratones Endogámicos C57BL , Necrosis/inducido químicamente , Degeneración Nerviosa/fisiología , Putamen/efectos de los fármacos , Putamen/fisiopatología , terc-Butilhidroperóxido
13.
Mol Chem Neuropathol ; 22(2): 123-42, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7916771

RESUMEN

t-Butylhydroperoxide can be used as a model oxidative stress-inducing agent in the brain following intracerebroventricular administration. Mice were treated with saline, t-butanol, or t-butylhydroperoxide. t-Butanol is the major metabolite of t-butylhydroperoxide. t-Butylhydroperoxide had a number of effects, including that it damages dopaminergic, cholinergic, and GABAergic neurons as demonstrated immunohistochemically. Electron microscopic examination demonstrated that astrocytes, oligodendrocytes, endothelial cells, pericytes, and neurons are damaged by t-butylhydroperoxide. Dopamine and its metabolites were affected in a number of brain regions, as were serotonin and its metabolite. Choline acetyl transferase activity was decreased in the striatum. Edema was apparent as assessed by tissue protein levels. There was evidence of lipid peroxidation produced by t-butylhydroperoxide in the midbrain. t-Butylhydroperoxide is a neurotoxin that may be useful in understanding the unexpected ways the brain responds to oxidative stress.


Asunto(s)
Encefalopatías/inducido químicamente , Encefalopatías/patología , Encéfalo/patología , Peróxidos/toxicidad , Especies Reactivas de Oxígeno/toxicidad , Animales , Monoaminas Biogénicas/metabolismo , Encéfalo/enzimología , Encefalopatías/enzimología , Edema Encefálico/patología , Colina O-Acetiltransferasa/metabolismo , Cromatografía Líquida de Alta Presión , Dopamina/metabolismo , Dopamina/fisiología , Electroquímica , Radicales Libres , Inmunohistoquímica , Inyecciones Intraventriculares , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo/fisiología , Sistema Nervioso Parasimpático/enzimología , Sistema Nervioso Parasimpático/patología , Peróxidos/administración & dosificación , Especies Reactivas de Oxígeno/administración & dosificación , terc-Butilhidroperóxido
14.
Free Radic Biol Med ; 15(2): 195-202, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8375692

RESUMEN

Many diseases and aging may be associated with oxidative stress in the brain. However, the effects of oxidative stress in the brain should be more clearly described, especially in terms of effects on brain reduced glutathione (GSH). This issue was addressed by intracerebroventricular injection of a direct-acting oxidative stress inducing agent, tert-butylhydroperoxide. Oxidized glutathione (GSSG) levels in the brain increased by as much as 90-fold during tert-butylhydroperoxide-induced oxidative stress. At the same time, brain GSH levels decreased. The brain appears to retain GSSG and not reduce it or export it efficiently. Vitamin E levels in the striatum increased during tert-butylhydroperoxide-induced oxidative stress. Aging alters the ability of the brain to detoxify an oxidative stress, in that 8-month-old mice retain GSSG in their brains much more than 2-month-old mice. Eight-month-old mice were much more susceptible to tert-butylhydroperoxide-induced toxicity than 2-month-old mice. This may indicate that aging makes the brain more susceptible to oxidative damage.


Asunto(s)
Encéfalo/metabolismo , Oxígeno/metabolismo , Peróxidos/farmacología , Envejecimiento/metabolismo , Animales , Encéfalo/efectos de los fármacos , Cuerpo Estriado/metabolismo , Glutatión/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , NADP/metabolismo , Oxidación-Reducción , Vitamina E/metabolismo , terc-Butilhidroperóxido
15.
Free Radic Biol Med ; 15(2): 169-79, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8397142

RESUMEN

MPP+ is redox active in the presence of cytochrome P450 reductase and induces the formation of O2.- and HO(.). In this study, we report the redox cycling capability of MPP+ with additional enzymes and with UV photolysis detected through ESR techniques. The treatment of MPP+ with UV light resulted in the production of HO. trapped as a spin adduct. Two of the enzymes examined in this study, xanthine oxidase and aldehyde dehydrogenase, produced O2.- in the presence of substrate. However, when MPP+ was added to the incubations, the radical trapped by DMPO was HO(.). This indicates that MPP+ redox cycles in the presence of these two enzymes or UV light, which produces HO.. Our data also suggest that MPP+ is reduced by lipoamide dehydrogenase. MPP+ stimulated the oxidation of reduced nicotinamide adenine dinucleotide (NADH) by the enzyme at concentrations between 2 mM and 8 mM of MPP+. Higher concentrations of MPP+ inhibited lipoamide dehydrogenase. MPP+ appears to be redox active with a number of redox enzymes. The mechanism involved may be hydride transfer from the enzymes to MPP+, rather than a direct single-electron reduction.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , 1-Metil-4-fenilpiridinio/metabolismo , Xantina Oxidasa/metabolismo , 1-Metil-4-fenilpiridinio/farmacología , Aldehído Deshidrogenasa/metabolismo , Dihidrolipoamida Deshidrogenasa/antagonistas & inhibidores , Dihidrolipoamida Deshidrogenasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Hidróxidos/metabolismo , Radical Hidroxilo , NAD/metabolismo , Oxidación-Reducción , Fotólisis , Superóxidos/metabolismo , Rayos Ultravioleta
16.
Free Radic Biol Med ; 15(2): 181-6, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8397143

RESUMEN

MPP+ has been reported to inhibit reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase in mitochondria, which results in the formation of O2(.-). The current report demonstrates that H2O2 and HO. are also products of MPP+ interaction with NADH dehydrogenase. It is possible that MPP. formation precedes the formation of some of these active oxygen species. Reducing equivalents for radical formation come from NADH. MPP+ may be capable of interacting with submitochondrial particles at a site other than the rotenone site, which results in some formation of oxygen radicals. Plasma amine oxidase incubations with MPDP+ resulted in O2.- H2O2, and perhaps HO. formation. This is probably due to MPP. formation from the oxidation of MPDP+. This study presents new findings that indicate the potential importance of oxygen radical formation in mitochondria during MPTP toxicity.


Asunto(s)
1-Metil-4-fenilpiridinio/farmacología , Mitocondrias Cardíacas/enzimología , Compuestos de Piridinio/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Bovinos , Óxidos N-Cíclicos , Etanol/farmacología , Radicales Libres , Peróxido de Hidrógeno/metabolismo , Hidróxidos/metabolismo , Radical Hidroxilo , NADH Deshidrogenasa/antagonistas & inhibidores , Compuestos de Piridinio/metabolismo , Marcadores de Spin , Partículas Submitocóndricas/enzimología
17.
Free Radic Biol Med ; 15(2): 187-93, 1993 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8397144

RESUMEN

The mechanism of acrolein-induced lipid peroxidation is unknown. This study found that acrolein and its glutathione adduct, glutathionylpropionaldehyde, induce oxygen radical formation. These oxygen radicals may be responsible for the induction of lipid peroxidation by acrolein. The enzymes xanthine oxidase and aldehyde dehydrogenase were found to interact with glutathionylpropionaldehyde to produce O2.- and HO(.). Acrolein was oxidized by xanthine oxidase to produce acroleinyl radical and O2(.-). Aldehyde dehydrogenase metabolized acrolein to form O2.- but not acroleinyl radical. The fact that glutathionylpropionaldehyde is a more potent stimulator of oxygen radical formation than acrolein indicates that glutathionylpropionaldehyde is a toxic metabolite of acrolein and may be responsible for some of the in vivo toxicity of acrolein.


Asunto(s)
Acroleína/farmacología , Oxígeno/metabolismo , Acroleína/química , Aldehído Deshidrogenasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Glutatión/análogos & derivados , Glutatión/farmacología , Hidróxidos/metabolismo , Radical Hidroxilo , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Superóxidos/análisis , Superóxidos/metabolismo , Xantina Oxidasa/metabolismo
18.
Cancer Lett ; 68(2-3): 207-13, 1993 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8443794

RESUMEN

We previously reported that medium conditioned by retinal pigmented epithelial cells can induce cellular differentiation in human retinoblastoma cells. Extensive neurite outgrowth, increased expression of neuronal marker molecules and decreases expression of glial marker molecules are characteristic of the differentiated phenotype. In the studies described here, we examine whether modulations in the expression of potential neurotransmitter molecules, catecholamines and indolealkyl amines, might be associated with the differentiation of retinoblastoma cells. Concentrations of serotonin, 5-hydroxyindoleacetic acid, 3-methoxytyrosine, homovanillic acid, and 3-methoxy-4-hydroxyphenylacetic acid in extracts of differentiated and undifferentiated retinoblastoma cells were assessed by HPLC. The results show that serotonin and its metabolite, 5-hydroxyindoleacetic acid, are characteristically present in undifferentiated cells. Dopa metabolites, 3-methoxytyrosine, homovanillic acid and 3-methoxy-4-hydroxy-phenylacetic acid, are uniquely present in differentiated cells. It appears that differentiation of retinoblastoma cells induced by factors secreted by retinal pigmented epithelial cells involves a switch from a serotonergic phenotype to one dominated by metabolites of dopa. These findings may provide clues about the factors that control retinoblastoma cells and metastasis.


Asunto(s)
Dihidroxifenilalanina/metabolismo , Epitelio Pigmentado Ocular/fisiología , Retinoblastoma/metabolismo , Retinoblastoma/patología , Serotonina/metabolismo , Diferenciación Celular , Cromatografía Líquida de Alta Presión , Medios de Cultivo Condicionados , Humanos , Espectroscopía de Resonancia Magnética , Neuronas/metabolismo , Células Tumorales Cultivadas
19.
J Med ; 24(6): 337-52, 1993.
Artículo en Inglés | MEDLINE | ID: mdl-8182348

RESUMEN

Human immunodeficiency virus (HIV) infection is associated with altered levels of glutathione (GSH) in cells and extracellular fluids. GSH is essential for lymphocyte proliferation and inhibits HIV replication. Therefore, determination of GSH and glutathione disulfide (GSSG) levels could be useful as indicators of the progression of the disease. Thyroid hormone levels are altered in acquired immuno-deficiency syndrome (AIDS), such that thyroid hormone might be a useful prognostic indicator of the severity of AIDS. Pneumocystis carinii pneumonia (PCP) is a debilitating disease of the lung that can accompany HIV infection. The effects of pulmonary infections were assessed in AIDS patients on thyroid hormone, GSH, GSSG levels and other parameters. Two groups of AIDS patients were selected, a group with PCP and a control group with other respiratory diseases. GSH was evaluated in plasma, pulmonary lavage fluid, pulmonary biopsy tissue and buccal cells. Levels of GSSG in pulmonary lavage fluid were higher in PCP patients than in controls, which suggests that PCP patients suffer from oxygen radical toxicity in their lungs. PCP patients may have altered plasma GSH utilization such that damaged lung tissue may become less efficient at using plasma GSH. Patients with PCP may have altered CD4 cell functions such that thyroid hormone levels do not correlate with CD4 cell counts. Patients with AIDS and secondary infections of the lung were found to have altered GSH redox states, probably indicative of physiologic adaptation to AIDS.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA/metabolismo , Glutatión/metabolismo , Neumonía por Pneumocystis/metabolismo , Glutatión/análogos & derivados , Disulfuro de Glutatión , Humanos , L-Lactato Deshidrogenasa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...