Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38659894

RESUMEN

CRISPR epigenomic editing technologies enable functional interrogation of non-coding elements. However, current computational methods for guide RNA (gRNA) design do not effectively predict the power potential, molecular and cellular impact to optimize for efficient gRNAs, which are crucial for successful applications of these technologies. We present "launch-dCas9" (machine LeArning based UNified CompreHensive framework for CRISPR-dCas9) to predict gRNA impact from multiple perspectives, including cell fitness, wildtype abundance (gauging power potential), and gene expression in single cells. Our launchdCas9, built and evaluated using experiments involving >1 million gRNAs targeted across the human genome, demonstrates relatively high prediction accuracy (AUC up to 0.81) and generalizes across cell lines. Method-prioritized top gRNA(s) are 4.6-fold more likely to exert effects, compared to other gRNAs in the same cis-regulatory region. Furthermore, launchdCas9 identifies the most critical sequence-related features and functional annotations from >40 features considered. Our results establish launch-dCas9 as a promising approach to design gRNAs for CRISPR epigenomic experiments.

2.
Cell Rep ; 33(9): 108460, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264623

RESUMEN

Technologies to reprogram cell-type specification have revolutionized the fields of regenerative medicine and disease modeling. Currently, the selection of fate-determining factors for cell reprogramming applications is typically a laborious and low-throughput process. Therefore, we use high-throughput pooled CRISPR activation (CRISPRa) screens to systematically map human neuronal cell fate regulators. We utilize deactivated Cas9 (dCas9)-based gene activation to target 1,496 putative transcription factors (TFs) in the human genome. Using a reporter of neuronal commitment, we profile the neurogenic activity of these factors in human pluripotent stem cells (PSCs), leading to a curated set of pro-neuronal factors. Activation of pairs of TFs reveals neuronal cofactors, including E2F7, RUNX3, and LHX8, that improve conversion efficiency, subtype specificity, and maturation of neuronal cell types. Finally, using multiplexed gene regulation with orthogonal CRISPR systems, we demonstrate improved neuronal differentiation with concurrent activation and repression of target genes, underscoring the power of CRISPR-based gene regulation for programming complex cellular phenotypes.


Asunto(s)
Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica/genética , Neuronas/metabolismo , Activación Transcripcional/genética , Diferenciación Celular , Humanos
3.
Sci Rep ; 9(1): 17220, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748650

RESUMEN

Cooperating gene mutations are typically required to transform normal cells enabling growth in soft agar or in immunodeficient mice. For example, mutations in Kras and transformation-related protein 53 (Trp53) are known to transform a variety of mesenchymal and epithelial cells in vitro and in vivo. Identifying other genes that can cooperate with oncogenic Kras and substitute for Trp53 mutation has the potential to lead to new insights into mechanisms of carcinogenesis. Here, we applied a genome-wide CRISPR/Cas9 knockout screen in KrasG12D immortalized mouse embryonic fibroblasts (MEFs) to search for genes that when mutated cooperate with oncogenic Kras to induce transformation. We also tested if mutation of the identified candidate genes could cooperate with KrasG12D to generate primary sarcomas in mice. In addition to identifying the well-known tumor suppressor cyclin dependent kinase inhibitor 2A (Cdkn2a), whose alternative reading frame product p19 activates Trp53, we also identified other putative tumor suppressors, such as F-box/WD repeat-containing protein 7 (Fbxw7) and solute carrier family 9 member 3 (Slc9a3). Remarkably, the TCGA database indicates that both FBXW7 and SLC9A3 are commonly co-mutated with KRAS in human cancers. However, we found that only mutation of Trp53 or Cdkn2a, but not Fbxw7 or Slc9a3 can cooperate with KrasG12D to generate primary sarcomas in mice. These results show that mutations in oncogenic Kras and either Fbxw7 or Slc9a3 are sufficient for transformation in vitro, but not for in vivo sarcomagenesis.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica/patología , Mutación , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Sarcoma Experimental/prevención & control , Animales , Sistemas CRISPR-Cas , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Proteínas de Neoplasias/genética , Sarcoma Experimental/genética , Sarcoma Experimental/patología , Transducción de Señal
4.
Nat Biotechnol ; 37(12): 1493-1501, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31548729

RESUMEN

Class 2 CRISPR-Cas systems, such as Cas9 and Cas12, have been widely used to target DNA sequences in eukaryotic genomes. However, class 1 CRISPR-Cas systems, which represent about 90% of all CRISPR systems in nature, remain largely unexplored for genome engineering applications. Here, we show that class 1 CRISPR-Cas systems can be expressed in mammalian cells and used for DNA targeting and transcriptional control. We repurpose type I variants of class 1 CRISPR-Cas systems from Escherichia coli and Listeria monocytogenes, which target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation and nuclear localization in human cells, and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering activation and repression domains to Cascade, we modulate the expression of targeted endogenous genes in human cells. This study demonstrates the use of Cascade as a CRISPR-based technology for targeted eukaryotic gene regulation, highlighting class 1 CRISPR-Cas systems for further exploration.


Asunto(s)
Sistemas CRISPR-Cas/genética , Ingeniería Genética/métodos , Transcripción Genética/genética , Escherichia coli/genética , Células HEK293 , Humanos , Listeria monocytogenes/genética , ARN Guía de Kinetoplastida/genética
5.
Methods Mol Biol ; 1767: 447-480, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29524151

RESUMEN

Genomic regulatory elements that control gene expression play an important role in many traits and diseases. Identifying the regulatory elements associated with each gene or phenotype and understanding the function of that element remain a significant challenge. To address this technological need, we developed CRISPR/Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. This protocol includes detailed instructions for design and cloning of gRNA libraries, construction of endogenous reporter cell lines via CRISPR/Cas9-mediated knock-in of fluorescent proteins, overall screen design, and recovery of the gRNA library for enrichment analysis. This protocol will be generally useful for implementing genome engineering technologies for high-throughput functional annotation of putative regulatory elements in their native chromosomal context.


Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Clonación Molecular/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Perfilación de la Expresión Génica/métodos , Técnicas de Sustitución del Gen/métodos , Biblioteca de Genes , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Células K562 , Proteínas Luminiscentes/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteína Fluorescente Roja
6.
Curr Opin Biotechnol ; 52: 32-41, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29500989

RESUMEN

Developments in CRISPR/Cas9-based technologies provide a new paradigm in functional screening of the genome. Conventional screening methods have focused on high-throughput perturbations of the protein-coding genome with technologies such as RNAi. However, equivalent methods for perturbing the non-coding genome have not existed until recently. CRISPR-based screening of genomic DNA has enabled the study of both genes and non-coding gene regulatory elements. Here we review recent progress in assigning function to the non-coding genome using CRISPR-based genomic and epigenomic screens, and discuss the prospects of these technologies to transforming our understanding of genome structure and regulation.


Asunto(s)
Sistemas CRISPR-Cas/genética , ADN/genética , Genómica/métodos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Epigenómica , Análisis de la Célula Individual
7.
Nat Biotechnol ; 35(6): 561-568, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28369033

RESUMEN

Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein-coding elements in the genome as having a central role in various biological processes. However, decoding the functions of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR-Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR-Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. Using dCas9KRAB repressor and dCas9p300 activator constructs and lentiviral single guide RNA libraries to target DNase I hypersensitive sites surrounding a gene of interest, we carried out both loss- and gain-of-function screens to identify regulatory elements for the ß-globin and HER2 loci in human cells. CERES readily identified known and previously unidentified regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Genoma Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Elementos Reguladores de la Transcripción/genética , Análisis de Secuencia de ADN/métodos , Mapeo Cromosómico/métodos , Epigenómica/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...