RESUMEN
Due to their target specificity, antibody-drug conjugatesâmonoclonal antibodies conjugated to a cytotoxic moietyâare efficient therapeutics that can kill malignant cells overexpressing a target gene. Linking an antibody with radioisotopes (radioimmunoconjugates) enables powerful diagnostics and/or closely related therapeutic applications, depending on the isotope. To generate site-specific radioimmunoconjugates, we utilized genetic code expansion and subsequent conjugation by inverse electron-demand Diels-Alder cycloaddition reactions. We show that, using this approach, site-specific labeling of trastuzumab with either zirconium-89 (89Zr) for diagnostics or lutetium-177 (177Lu) for therapeutics yields efficient radioimmunoconjugates. Positron emission tomography imaging revealed a high accumulation of site-specifically 89Zr-labeled trastuzumab in tumors after 24 h and low accumulation in other organs. The corresponding 177Lu-trastuzumab radioimmunoconjugates were comparably distributed in vivo.
Asunto(s)
Inmunoconjugados , Radioisótopos , Tomografía de Emisión de Positrones/métodos , Anticuerpos Monoclonales , Trastuzumab , Línea Celular Tumoral , Marcaje Isotópico/métodosRESUMEN
Cell based therapies are evolving as an effective new approach to treat various diseases. To understand the safety, efficacy, and mechanism of action of cell-based therapies, it is imperative to follow their biodistribution noninvasively. Positron-emission-tomography (PET)-based non-invasive imaging of cell trafficking offers such a potential. Herein, we evaluated and compared three different ready-to-use direct cell radiolabeling synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA for PET imaging-based trafficking of white blood cells (WBCs) and stem cells (SCs) up to 7 days in athymic nude mice. We compared the degree of 89Zr complexation and percentage of cell radiolabeling efficiencies with each. All three synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA, were successfully prepared, and used for radiolabeling of WBCs and SCs. The highest cell radiolabeling yield was found for [89Zr]Zr-DFO-Bn-NCS, followed by [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA. In terms of biodistribution, WBCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS, were primarily accumulated in liver and spleen, whereas SCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS were found in lung, liver and spleen. A high bone uptake was observed for both WBCs and SCs radiolabeled with [89Zr]Zr-Hy3ADA5-SA, suggesting in-vivo instability of [89Zr]Zr-Hy3ADA5-SA synthon. This study offers an appropriate selection of ready-to-use radiolabeling synthons for noninvasive trafficking of WBCs, SCs and other cell-based therapies.
Asunto(s)
Radioisótopos , Circonio , Animales , Leucocitos , Ratones , Ratones Desnudos , Células Madre , Distribución Tisular , Tomografía Computarizada por Rayos XRESUMEN
INTRODUCTION: Combination of hydroxamate bearing side chains with the 6-amino-1,4-diazepane scaffold provides a promising strategy for fast and stable 89Zr-labeling of antibodies. Following this approach, we hereby present the development, labeling kinetics and in vitro complex stability of three resulting bifunctional chelator derivatives both stand-alone and coupled to a model protein in comparison to different linear deferoxamine (DFO) derivatives. METHODS: The novel 89Zr-chelator Hy3ADA5 was prepared via amide-coupling of separately synthesized 6-amino-1,4-diazepane-6-pentanoic acid and hydroxamate-containing side chains. Two further bifunctional derivatives were synthesized by extending the resulting system with either a squaramide- or p-isothiocyanatophenyl moiety for simplified binding to proteins. After coupling to a model antibody and purification, the resulting immunoconjugates as well as the unbound chelator derivatives were 89Zr-labeled at room temperature (RT) and neutral pH. For comparison, different DFO derivatives were analogously coupled, purified and radiolabeled. In vitro complex stability of the resulting radioconjugates was investigated in phosphate buffered saline (PBS) and human serum at 37 °C over a period of 7 days. RESULTS: 89Zr-labeling of the novel unbound Hy3ADA5 derivatives indicated rapid complexation kinetics resulting in high radiochemical conversions (RCC) of 84-94% after 90 min. Similar or even faster radiolabeling with slightly increased maximum yields was obtained using the DFO-analogues. Initially, [89Zr]Zr-DFO*-p-Ph-NCS showed a delayed formation, nevertheless reaching almost quantitative complexation. Radiolabeling of the corresponding immunoconjugates Hy3ADA5-SA-mAb and Hy3ADA5-p-Ph-NCS-mAb resulted in 82.0 ± 1.1 and 89.2 ± 0.7% RCC, respectively after 90 min representing high but slightly lower labeling efficiency compared to the DFO- and DFO*-functionalized analogues. All examined radioimmunoconjugates showed very high in vitro complex stability both in human serum and PBS, providing no significant release of the radiometal. In the case of unbound chelators, however, the p-Ph-NCS-functionalized derivatives indicated considerable instability in human serum already after 1 h. CONCLUSION: The novel chelator derivatives based on hydroxamate-functionalized 6-amino-1,4-diazepane revealed fast and high yielding 89Zr-labeling kinetics as well as high in vitro complex stability both stand-alone and coupled to an antibody. Therefore, Hy3ADA5 represents a promising tool for radiolabeling of biomolecules such as antibodies at mild conditions for immuno-PET applications.
Asunto(s)
QuelantesRESUMEN
Targeting vectors bound to a chelator represent a significant fraction of radiopharmaceuticals used nowadays for diagnostic and therapeutic purposes in nuclear medicine. The use of squaramides as coupling units for chelator and targeting vector helps to circumvent the disadvantages of several common coupling methods. This review gives an overview of the use of squaric acid diesters (SADE) as linking agents. It focuses on the conjugation of cyclic chelators, e.g., DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), as well as hybrid chelators like AAZTA5 (6-pentanoic acid-6-amino-1,4-diazepine tetracetic acid) or DATA5m (6-pentanoic acid-6-amino-1,4-diazapine-triacetate) to different targeting vectors, e.g., prostate-specific membrane antigen inhibitors (KuE; PSMAi), fibroblast activation protein inhibitors (FAPi), and monoclonal antibodies (mAbs). An overview of the synthesis, radiolabeling, and in vitro and in vivo behavior of the described structures is given. The unique properties of SADE enable a fast and simple conjugation of chelators to biomolecules, peptides, and small molecules under mild conditions. Furthermore, SA-containing conjugates could not only display similar in vitro characteristics in terms of binding affinity when compared to reference compounds, but may even induce beneficial effects on the pharmacokinetic properties of these radiopharmaceuticals.
Asunto(s)
Ciclobutanos/química , Neoplasias/diagnóstico por imagen , Radiofármacos/química , Ciclobutanos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Tomografía de Emisión de Positrones , Radiofármacos/uso terapéuticoRESUMEN
BACKGROUND: Combining the advantages of both cyclic and acyclic chelator systems, AAZTA (1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine) is well suited for complexation of various diagnostic and therapeutic radiometals such as gallium-68, scandium-44 and lutetium-177 under mild conditions. Due to its specificity for primary amines and pH dependent binding properties, squaric acid (SA) represents an excellent tool for selective coupling of the appropriate chelator to different target vectors. Therefore, the aim of this study was to evaluate radiolabeling properties of the novel bifunctional AAZTA5-SA being coupled to a model antibody (bevacizumab) in comparison to DOTA-SA, DTPA-p-Bn-SA and CHX-Aâ³-DTPA-p-Bn-SA using the therapeutic nuclide lutetium-177. METHODS AND RESULTS: As proof-of-concept, bevacizumab was first functionalized with AAZTA5-SA, DOTA-SA, DTPA-p-Bn-SA or CHX-Aâ³-DTPA-p-Bn-SA. After purification via fractionated size exclusion chromatography (SEC), the corresponding immunoconjugates were subsequently radiolabeled with lutetium-177 at pH 7 and room temperature (RT) as well as 37 °C. After 90 min, labeling of AAZTA5-SA-mAb resulted in almost quantitative radiochemical yields (RCY) of >98% and >99%, respectively. Formation of [177Lu]Lu-DTPA-p-Bn-SA-mAb indicated rapid labeling kinetics reaching similar yields at RT already after 30 min. Fast but incomplete radiolabeling of the CHX-Aâ³-analogue could be observed with a yield of 74% after 10 min and no further significant increase. In contrast, 177Lu-labeling of DOTA-SA-mAb showed negligible radiochemical yields of <2% both at room temperature and 37 °C. In vitro complex stability measurements of [177Lu]Lu-AAZTA5-SA-mAb at 37 °C indicated >94% protein bound activity in human serum and >92% in phosphate buffered saline (PBS), respectively within 15 days. [177Lu]Lu-DTPA-p-Bn-SA-mAb and [177Lu]Lu-CHX-Aâ³-DTPA-p-Bn-SA-mAb revealed similar to even slightly higher in vitro stability in both media. CONCLUSION: Coupling of AAZTA5-SA to the monoclonal antibody bevacizumab allowed for 177Lu-labeling with almost quantitative radiochemical yields both at room temperature and 37 °C. Within 15 days, the resulting radioconjugate indicated very high in vitro complex stability both in human serum and PBS. Therefore, AAZTA5-SA is a promising tool for 177Lu-labeling of sensitive biomolecules such as antibodies for theranostic applications.
Asunto(s)
Compuestos Heterocíclicos con 1 Anillo , Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Ácido Pentético/análogos & derivados , RadioinmunoterapiaRESUMEN
BACKGROUND: Fibroblast activation protein (FAP) is a proline selective serine protease that is overexpressed in tumor stroma and in lesions of many other diseases that are characterized by tissue remodeling. In 2014, a most potent FAP-inhibitor (referred to as UAMC1110) with low nanomolar FAP-affinity and high selectivity toward related enzymes such as prolyl oligopeptidase (PREP) and the dipeptidyl-peptidases (DPPs): DPP4, DPP8/9 and DPP2 were developed. This inhibitor has been adopted recently by other groups to create radiopharmaceuticals by coupling bifunctional chelator-linker systems. Here, we report squaric acid (SA) containing bifunctional DATA5m and DOTA chelators based on UAMC1110 as pharmacophor. The novel radiopharmaceuticals DOTA.SA.FAPi and DATA5m.SA.FAPi with their non-radioactive derivatives were characterized for in vitro inhibitory efficiency to FAP and PREP, respectively and radiochemical investigated with gallium-68. Further, first proof-of-concept in vivo animal study followed by ex vivo biodistribution were determined with [68Ga]Ga-DOTA.SA.FAPi. RESULTS: [68Ga]Ga-DOTA.SA.FAPi and [68Ga]Ga-DATA5m.SA.FAPi showed high complexation > 97% radiochemical yields after already 10 min and high stability over a period of 2 h. Affinity to FAP of DOTA.SA.FAPi and DATA5m.SA.FAPi and its natGa and natLu-labeled derivatives were excellent resulting in low nanomolar IC50 values of 0.7-1.4 nM. Additionally, all five compounds showed low affinity for the related protease PREP (high IC50 with 1.7-8.7 µM). First proof-of-principle in vivo PET-imaging animal studies of the [68Ga]Ga-DOTA.SA.FAPi precursor in a HT-29 human colorectal cancer xenograft mouse model indicated promising results with high accumulation in tumor (SUVmean of 0.75) and low background signal. Ex vivo biodistribution showed highest uptake in tumor (5.2%ID/g) at 60 min post injection with overall low uptake in healthy tissues. CONCLUSION: In this work, novel PET radiotracers targeting fibroblast activation protein were synthesized and biochemically investigated. Critical substructures of the novel compounds are a squaramide linker unit derived from the basic motif of squaric acid, DOTA and DATA5m bifunctional chelators and a FAP-targeting moiety. In conclusion, these new FAP-ligands appear promising, both for further research and development as well as for first human application.
RESUMEN
PURPOSE: Hematopoietic stem cell transplantation is the only curative treatment for several hematological malignancies and immune deficiency syndromes. Nevertheless, the development of graft-versus-host disease (GvHD) after transplantation is a severe complication with high morbidity and mortality. The aim of this study was to image human T cells during GvHD development and their migration into GvHD-related organs. By using a radiolabeled anti-human CD3 monoclonal antibody (mAb), we were able to visualize GvHD progression in a humanized mouse model. METHODS: Human peripheral blood mononuclear cells (PBMC) were transferred into immunodeficient mice (initially n = 11 mice/group) to induce GvHD. One group additionally received regulatory T cells (Treg) for prevention of GvHD. T cell migration was visualized by sequential small animal PET/MRI using 89Zr-labeled anti-human CD3 mAb. Flow cytometry and immunohistochemistry were used to measure T cell frequencies in relevant organs at different time points after engraftment. RESULTS: Using radiolabeled anti-CD3 mAb, we successfully visualized human T cells in inflamed organs of mice by 89Zr-anti-CD3-PET/MRI. Upon GvHD progression, we observed increased numbers of CD3+ T cells in the liver (22.9% on day 3; 94.2% on day 10) and the spleen (4.4% on day 3; 58.8% on day 10) which correlated with clinical symptoms. The liver showed distinct spot-like lesions representing a strong focal accumulation of T cells. Administration of Treg prior GvHD induction reduced T cell accumulation in the liver from 857 ± 177 CD3+ cells/mm2 to 261 ± 82 CD3+ cells/mm2 and thus prevented GvHD. CONCLUSION: 89Zr-labeled anti-human CD3 mAb can be used as a proof of concept to detect the exact spatio-temporal distribution of GvHD-mediating T cells. In the future, radiolabeled T cell-specific mAb could be employed as a predictive early biomarker during the course of GvHD maybe even before clinical signs of the disease become evident. Furthermore, monitoring T cell migration and proliferation might improve tailored GvHD therapy.
Asunto(s)
Enfermedad Injerto contra Huésped , Animales , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Inflamación , Cinética , Leucocitos Mononucleares , Ratones , Ratones SCID , Tomografía de Emisión de Positrones , Linfocitos TRESUMEN
Polymeric micelles are of increasing interest as drug delivery vehicles since they can accumulate in tumor tissue through EPR effect and deliver their hydrophobic cargo. The pharmacology can be visualized and quantified noninvasively by molecular imaging techniques. Here, a novel, fast and efficient technique for radiolabeling various HPMA-LMA based micellar aggregates with hydrophobic oxine-complexes of the trivalent radiometals 68Ga and 111In was investigated. The radiometal-oxine complexes resemble the hydrophobic drug 111In[In]-oxine considered for the diagnosis of infection and inflammation. Promising in vitro stability lead to in vivo evaluation in healthy mice in terms of quantitative ex vivo organ distribution. The results show that while the hydrophobic radiometal-oxine complexes were safely encapsulated in aqueous saline, they left the polymeric micelles slowly in contact with blood serum and more rapidly in vivo. Due to the similarity between the radiometal complexes and hydrophobic drugs transported in the polymeric micelles this has significant implications for further strategies on transport mechanisms of hydrophobically encapsulated drugs.