Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8413, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39333509

RESUMEN

Ecosystem services such as pollination and biocontrol may be severely affected by emerging nano/micro-plastics (NMP) pollution. Here, we synthesize the little-known effects of NMP on pollinators and biocontrol agents on the organismal, farm and landscape scale. Ingested NMP trigger organismal changes from gene expression, organ damage to behavior modifications. At the farm and landscape level, NMP will likely amplify synergistic effects with other threats such as pathogens, and may alter floral resource distributions in high NMP concentration areas. Understanding exposure pathways of NMP on pollinators and biocontrol agents is critical to evaluate future risks for agricultural ecosystems and food security.


Asunto(s)
Agricultura , Seguridad Alimentaria , Polinización , Agricultura/métodos , Animales , Plásticos , Ecosistema , Contaminación Ambiental , Agentes de Control Biológico , Productos Agrícolas
2.
Nat Ecol Evol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209981

RESUMEN

Ecosystem functioning depends on biodiversity at multiple trophic levels, yet relationships between multitrophic diversity and ecosystem multifunctionality have been poorly explored, with studies often focusing on individual trophic levels and functions and on specific ecosystem types. Here, we show that plant diversity can affect ecosystem functioning both directly and by affecting other trophic levels. Using data on 13 trophic groups and 13 ecosystem functions from two large biodiversity experiments-one representing temperate grasslands and the other subtropical forests-we found that plant diversity increases multifunctionality through elevated multitrophic diversity. Across both experiments, the association between multitrophic diversity and multifunctionality was stronger than the relationship between the diversity of individual trophic groups and multifunctionality. Our results also suggest that the role of multitrophic diversity is greater in forests than in grasslands. These findings imply that, to promote sustained ecosystem multifunctionality, conservation planning must consider the diversity of both plants and higher trophic levels.

3.
Sci Total Environ ; 929: 172239, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583620

RESUMEN

There are substantial concerns about impaired honey bee health and colony losses due to several poorly understood factors. We used MALDI profiling (MALDI BeeTyping®) analysis to investigate how some environmental and management factors under field conditions across Europe affected the honey bee haemolymph peptidome (all peptides in the circulatory fluid), as a profile of molecular markers representing the immune status of Apis mellifera. Honey bees were exposed to a range of environmental stressors in 128 agricultural sites across eight European countries in four biogeographic zones, with each country contributing eight sites each for two different cropping systems: oilseed rape (OSR) and apple (APP). The full haemolymph peptide profiles, including the presence and levels of three key immunity markers, namely the antimicrobial peptides (AMPs) Apidaecin, Abaecin and Defensin-1, allowed the honey bee responses to environmental variables to be discriminated by country, crop type and site. When considering just the AMPs, it was not possible to distinguish between countries by the prevalence of each AMP in the samples. However, it was possible to discriminate between countries on the amounts of the AMPs, with the Swedish samples in particular expressing high amounts of all AMPs. A machine learning model was developed to discriminate the haemolymphs of bees from APP and OSR sites. The model was 90.6 % accurate in identifying the crop type from the samples used to build the model. Overall, MALDI BeeTyping® of bee haemolymph represents a promising and cost-effective "blood test" for simultaneously monitoring dozens of peptide markers affected by environmental stressors at the landscape scale, thus providing policymakers with new diagnostic and regulatory tools for monitoring bee health.


Asunto(s)
Agricultura , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Abejas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Europa (Continente) , Pruebas Hematológicas , Hemolinfa , Monitoreo del Ambiente/métodos
4.
Sci Rep ; 14(1): 3524, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347035

RESUMEN

Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.


Asunto(s)
Bacterias , Polinización , Abejas , Animales , Europa (Continente)
5.
Nature ; 628(8007): 355-358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38030722

RESUMEN

Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.


Asunto(s)
Insecticidas , Plaguicidas , Abejas , Animales , Plaguicidas/toxicidad , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Agricultura , Polen
6.
Glob Chang Biol ; 29(18): 5321-5333, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36970888

RESUMEN

Carbon-focused climate mitigation strategies are becoming increasingly important in forests. However, with ongoing biodiversity declines we require better knowledge of how much such strategies account for biodiversity. We particularly lack information across multiple trophic levels and on established forests, where the interplay between carbon stocks, stand age, and tree diversity might influence carbon-biodiversity relationships. Using a large dataset (>4600 heterotrophic species of 23 taxonomic groups) from secondary, subtropical forests, we tested how multitrophic diversity and diversity within trophic groups relate to aboveground, belowground, and total carbon stocks at different levels of tree species richness and stand age. Our study revealed that aboveground carbon, the key component of climate-based management, was largely unrelated to multitrophic diversity. By contrast, total carbon stocks-that is, including belowground carbon-emerged as a significant predictor of multitrophic diversity. Relationships were nonlinear and strongest for lower trophic levels, but nonsignificant for higher trophic level diversity. Tree species richness and stand age moderated these relationships, suggesting long-term regeneration of forests may be particularly effective in reconciling carbon and biodiversity targets. Our findings highlight that biodiversity benefits of climate-oriented management need to be evaluated carefully, and only maximizing aboveground carbon may fail to account for biodiversity conservation requirements.


Asunto(s)
Bosques , Árboles , Biodiversidad , Carbono , Clima
7.
Proc Biol Sci ; 289(1984): 20221013, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36476004

RESUMEN

Pesticide exposure and food stress are major threats to bees, but their potential synergistic impacts under field-realistic conditions remain poorly understood and are not considered in current pesticide risk assessments. We conducted a semi-field experiment to examine the single and interactive effects of the novel insecticide flupyradifurone (FPF) and nutritional stress on fitness proxies in the solitary bee Osmia bicornis. Individually marked bees were released into flight cages with monocultures of buckwheat, wild mustard or purple tansy, which were assigned to an insecticide treatment (FPF or control) in a crossed design. Nutritional stress, which was high in bees foraging on buckwheat, intermediate on wild mustard and low on purple tansy, modulated the impact of insecticide exposure. Within the first day after application of FPF, mortality of bees feeding on buckwheat was 29 times higher compared with control treatments, while mortality of FPF exposed and control bees was similar in the other two plant species. Moreover, we found negative synergistic impacts of FPF and nutritional stress on offspring production, flight activity, flight duration and flower visitation frequency. These results reveal that environmental policies and risk assessment schemes that ignore interactions among anthropogenic stressors will fail to adequately protect bees and the pollination services they provide.


Asunto(s)
Insecticidas , Abejas , Animales , Insecticidas/toxicidad , Política Ambiental
8.
Elife ; 112022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36444645

RESUMEN

Addressing global biodiversity loss requires an expanded focus on multiple dimensions of biodiversity. While most studies have focused on the consequences of plant interspecific diversity, our mechanistic understanding of how genetic diversity within plant species affects plant productivity remains limited. Here, we use a tree species × genetic diversity experiment to disentangle the effects of species diversity and genetic diversity on tree productivity, and how they are related to tree functional diversity and trophic feedbacks. We found that tree species diversity increased tree productivity via increased tree functional diversity, reduced soil fungal diversity, and marginally reduced herbivory. The effects of tree genetic diversity on productivity via functional diversity and soil fungal diversity were negative in monocultures but positive in the mixture of the four tree species tested. Given the complexity of interactions between species and genetic diversity, tree functional diversity and trophic feedbacks on productivity, we suggest that both tree species and genetic diversity should be considered in afforestation.


Biodiversity, the richness of species in a given ecosystem, is essential for maintaining ecological functions. This is supported by many long-term biodiversity experiments where researchers manipulated the numbers of tree species they planted in a forest and then evaluated both its productivity (how much biological material the forest produced in a given timeframe) and the health of its trees. This work contributed to our understanding of forest ecology and paved the way for better reforestation approaches. The most important observation was that diverse forests, which contain several tree species, are more productive and healthier than monocultures where a single tree species dominates. However, it remained unclear what the role of genetic diversity within individual tree species is in determining productivity and health of forests. Tang, Zhang et al. set out to improve on previous studies on tree genetic diversity and community productivity by looking at two possible mechanisms that might affect the productivity of a forest ecosystem using publicly available data. First, they looked at the diversity of traits found within a tree population, which determines what resources in the ecosystem the trees can exploit; for example, trees with varied specific leaf areas (that is the ratio between a leaf's area and its dry mass) have more access to different intensities of sunlight for photosynthesis, allowing the whole forest to gain more biomass. Second, they considered interactions with other organisms such as herbivore animals and soil fungi that affect tree growth by either consuming their leaves or competing for the same resources. Tang, Zhang et al. used a mathematical model to interpret a complex dataset that includes multiple parameters for each of four types of forest: a forest with a single tree species seeded from a single parent tree (which will have low species and genetic diversity), a forest with a single tree species seeded from several parent trees (low species diversity and high genetic diversity, due to the diversity of parents), a forest with four tree species each seeded from a single parent tree (high species diversity and low genetic diversity), and a forest with four tree species each seeded from several parent trees (high species and genetic diversity). Using their model, Tang, Zhang et al. determined that species diversity promotes productivity because the increased diversity of traits allows trees to exploit more of the surrounding resources. Genetic diversity, on the other hand, did not seem to have a direct effect on overall productivity. However, greater genetic diversity did coincide with an increase in the diversity of traits in forests with a single tree species, which led to a decrease in damage to tree leaves by herbivores. This suggests that high genetic diversity in species-rich forests is likely also beneficial as herbivores are less able to damage tree foliage. As expected, in single-species forests with both low and high genetic diversity, higher soil fungi diversity was associated with a loss in productivity. Interestingly, in forests that had high species and genetic diversity, this effect was reversed, and higher genetic diversity reduced the loss of productivity caused by soil fungi, resulting in higher productivity overall. These results should be considered in reforestation projects to promote genetic diversity of trees on top of species diversity when replanting. How genetic diversity leads to downstream mechanisms that benefit community productivity is not fully understood and future research could look at what specific genetic features matter most to help select the ideal mixture of trees to maximize productivity and increase the land's ecological and economic value.


Asunto(s)
Bosques , Árboles , Árboles/genética , Retroalimentación , Biodiversidad , Suelo , Variación Genética , Ecosistema
9.
Environ Int ; 164: 107252, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35483184

RESUMEN

Pesticide exposure is considered a major driver of pollinator decline and the use of neonicotinoid insecticides has been restricted by regulatory authorities due to their risks for pollinators. Impacts of new alternative sulfoximine-based compounds on solitary bees and their potential interactive effects with other commonly applied pesticides in agriculture remain unclear. Here, we conducted a highly replicated full-factorial semi-field experiment with the solitary bee Osmia bicornis, an important pollinator of crops and wild plants in Europe, and Phacelia tanacetifolia as a model crop. We show that spray applications of the insecticide sulfoxaflor (product Closer) and the fungicide azoxystrobin (product Amistar), both alone and combined, had no significant negative impacts on adult female survival or the production, mortality, sex ratio and body size of offspring when sulfoxaflor was applied five days before crop flowering. Our results indicate that for O. bicornis (1) the risk of adverse impacts of sulfoxaflor (Closer) on fitness is small when applied at least five days before crop flowering and (2) that azoxystrobin (Amistar) has a low potential of exacerbating sulfoxaflor effects under field-realistic conditions.


Asunto(s)
Fungicidas Industriales , Insecticidas , Plaguicidas , Animales , Abejas , Femenino , Fungicidas Industriales/toxicidad , Insecticidas/toxicidad , Neonicotinoides , Piridinas , Compuestos de Azufre/toxicidad
10.
Sci Total Environ ; 829: 154450, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35276144

RESUMEN

Bees are exposed to various stressors, including pesticides and lack of flowering resources. Despite potential interactions between these stressors, the impacts of pesticides on bees are generally assumed to be consistent across bee-attractive crops, and regulatory risk assessments of pesticides neglect interactions with flowering resources. Furthermore, impacts of fungicides on bees are rarely examined in peer-reviewed studies, although these are often the pesticides that bees are most exposed to. In a full-factorial semi-field experiment with 39 large flight cages, we assessed the single and combined impacts of the globally used azoxystrobin-based fungicide Amistar® and three types of flowering resources (Phacelia, buckwheat, and a floral mix) on Bombus terrestris colonies. Although Amistar is classified as bee-safe, Amistar exposure through Phacelia monocultures reduced adult worker body mass and colony growth (including a 55% decline in workers and an 88% decline in males), while the fungicide had no impact on colonies in buckwheat or the floral mix cages. Furthermore, buckwheat monocultures hampered survival and fecundity irrespective of fungicide exposure. This shows that bumblebees require access to complementary flowering species to gain both fitness and fungicide tolerance and that Amistar impacts are flowering resource-dependent. Our findings call for further research on how different flowering plants affect bees and their pesticide tolerance to improve guidelines for regulatory pesticide risk assessments and inform the choice of plants that are cultivated to safeguard pollinators.


Asunto(s)
Fungicidas Industriales , Insecticidas , Plaguicidas , Animales , Abejas , Productos Agrícolas , Fungicidas Industriales/toxicidad , Masculino , Reproducción
11.
Ecology ; 103(3): e3614, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921678

RESUMEN

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Asunto(s)
Ecosistema , Polinización , Animales , Abejas , Productos Agrícolas , Flores , Insectos
12.
Trends Ecol Evol ; 36(12): 1067-1070, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34563404

RESUMEN

Reversing the decline of biodiversity in European agricultural landscapes is urgent. We suggest eight measures addressing politics, economics, and civil society to instigate transformative changes in agricultural landscapes. We emphasize the need for a well-informed society and political measures promoting sustainable farming by combining food production and biodiversity conservation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Agricultura
13.
Environ Int ; 157: 106813, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34455190

RESUMEN

Sulfoximines, the next generation systemic insecticides developed to replace neonicotinoids, have been shown to negatively impact pollinator development and reproduction. However, field-realistic studies on sulfoximines are few and consequences on pollination services unexplored. Moreover, the impacts of other agrochemicals such as fungicides, and their combined effects with insecticides remain poorly investigated. Here, we show in a full factorial semi-field experiment that spray applications of both the product Closer containing the insecticide sulfoxaflor and the product Amistar containing the fungicide azoxystrobin, negatively affected the individual foraging performance of bumblebees (Bombus terrestris). Insecticide exposure further reduced colony growth and size whereas fungicide exposure decreased pollen deposition. We found indications for resource limitation that might have exacerbated pesticide effects on bumblebee colonies. Our work demonstrates that field-realistic exposure to sulfoxaflor can adversely impact bumblebees and that applications before bloom may be insufficient as a mitigation measure to prevent its negative impacts on pollinators. Moreover, fungicide use during bloom could reduce bumblebee foraging performance and pollination services.


Asunto(s)
Fungicidas Industriales , Insecticidas , Animales , Abejas , Fungicidas Industriales/toxicidad , Insecticidas/toxicidad , Neonicotinoides , Polen , Polinización
14.
Oecologia ; 196(1): 289-301, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33895883

RESUMEN

Plant diversity affects multi-trophic communities, but in young regrowth forests, where forest insects are in the process of re-establishment, other biotic and also abiotic factors might be more important. We studied cavity-nesting bees, wasps and their natural enemies along an experimental tree diversity gradient in subtropical South-East China. We compared insect communities of experimental young forests with communities of established natural forests nearby the experiment and tested for direct and indirect effects of tree diversity, tree basal area (a proxy of tree biomass), canopy cover and microclimate on bee and wasp community composition, abundance and species richness. Finally, we tested if the trophic levels of bees, herbivore-hunting wasps, spider-hunting wasps and their natural enemies respond similarly. Forest bee and wasp community composition re-established towards communities of the natural forest with increasing tree biomass and canopy cover. These factors directly and indirectly, via microclimatic conditions, increased the abundance of bees, wasps and their natural enemies. While bee and wasp species richness increased with abundance and both were not related to tree diversity, abundance increased directly with canopy cover, mediated by tree biomass. Abundance of natural enemies increased with host (bee and wasp) abundance irrespective of their trophic position. In conclusion, although maximizing tree diversity is an important goal of reforestation and forest conservation, rapid closure of canopies is also important for re-establishing communities of forest bees, wasps and their natural enemies.


Asunto(s)
Bosques , Microclima , Animales , Abejas , Biodiversidad , China , Ecosistema , Árboles
15.
Sci Total Environ ; 778: 146084, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33714104

RESUMEN

Exposure to pesticides is considered a major threat to bees and several neonicotinoid insecticides were recently banned in cropland within the European Union in light of evidence of their potential detrimental effects. Nonetheless, bees remain exposed to many pesticides whose effects are poorly understood. Recent evidence suggests that one of the most prominent replacements of the banned neonicotinoids - the insecticide sulfoxaflor - harms bees and that fungicides may have been overlooked as a driver of bee declines. Realistic-exposure studies are, however, lacking. Here, we assess the impact of the insecticide Closer (active ingredient: sulfoxaflor) and the widely used fungicide Amistar (a.i.: azoxystrobin) on honeybees in a semi-field study (10 flight cages containing a honeybee colony, for each of three treatments: Closer, Amistar, control). The products were applied according to label instructions either before (Closer) or during (Amistar) the bloom of purple tansy. We found no significant effects of Closer or Amistar on honeybee colony development or foraging activity. Our study suggests that these pesticides pose no notable risk to honeybees when applied in isolation, following stringent label instructions. The findings on Closer indicate that a safety-period of 5-6 days between application and bloom, which is only prescribed in a few EU member states, may prevent its impacts on honeybees. However, to conclude whether Closer and Amistar can safely be applied, further realistic-exposure studies should examine their effects in combination with other chemical or biological stressors on various pollinator species.


Asunto(s)
Fungicidas Industriales , Insecticidas , Animales , Abejas , Fungicidas Industriales/toxicidad , Insecticidas/toxicidad , Neonicotinoides , Piridinas , Pirimidinas , Estrobilurinas/toxicidad , Compuestos de Azufre
16.
Oecologia ; 194(3): 465-480, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33079266

RESUMEN

Urban green spaces such as gardens often consist of native and exotic plant species, which provide pollen and nectar for flower-visiting insects. Although some exotic plants are readily visited by pollinators, it is unknown if and at which time of the season exotic garden plants may supplement or substitute for flower resources provided by native plants. To investigate if seasonal changes in flower availability from native vs. exotic plants affect flower visits, diversity and particularly plant-pollinator interaction networks, we studied flower-visiting insects over a whole growing season in 20 urban residential gardens in Germany. Over the course of the season, visits to native plants decreased, the proportion of flower visits to exotics increased, and flower-visitor species richness decreased. Yet, the decline in flower-visitor richness over the season was slowed in gardens with a relatively higher proportion of flowering exotic plants. This compensation was more positively linked to the proportion of exotic plant species than to the proportion of exotic flower cover. Plant-pollinator interaction networks were moderately specialized. Interactions were more complex in high summer, but interaction diversity, linkage density, and specialisation were not influenced by the proportion of exotic species. Thus, later in the season when few native plants flowered, exotic garden plants partly substituted for native flower resources without apparent influence on plant-pollinator network structure. Late-flowering garden plants support pollinator diversity in cities. If appropriately managed, and risk of naturalisation is minimized, late-flowering exotic plants may provide floral resources to support native pollinators when native plants are scarce.


Asunto(s)
Jardines , Polinización , Animales , Ciudades , Flores , Alemania , Plantas
18.
Ecol Evol ; 10(6): 2979-2990, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211170

RESUMEN

Hairiness is a salient trait of insect pollinators that has been linked to thermoregulation, pollen uptake and transportation, and pollination success. Despite its potential importance in pollination ecology, hairiness is rarely included in pollinator trait analyses. This is likely due to the lack of standardized and efficient methods to measure hairiness. We describe a novel methodology that uses a stereomicroscope equipped with a live measurement module software to quantitatively measure two components of hairiness: hair density and hair length. We took measures of the two hairiness components in 109 insect pollinator species (including 52 bee species). We analyzed the relationship between hair density and length and between these two components and body size. We combined hair density and length measures to calculate a hairiness index and tested whether hairiness differed between major pollinator groups and bee genera. Body size was strongly and positively correlated to hair length and weakly and negatively correlated to hair density. The correlation between the two hairiness components was weak and negative. According to our hairiness index, butterflies and moths were the hairiest pollinator group, followed by bees, hoverflies, beetles, and other flies. Among bees, bumblebees (Bombus) and mason bees (Osmia) were the hairiest taxa, followed by digger bees (Anthophorinae), sand bees (Andrena), and sweat bees (Halictini). Our methodology provides an effective and standardized measure of the two components of hairiness (hair density and length), thus allowing for a meaningful interpretation of hairiness. We provide a detailed protocol of our methodology, which we hope will contribute to improve our understanding of pollination effectiveness, thermal biology, and responses to climate change in insects.

19.
Ecol Evol ; 10(3): 1489-1509, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32076529

RESUMEN

Retention forestry, which retains a portion of the original stand at the time of harvesting to maintain continuity of structural and compositional diversity, has been originally developed to mitigate the impacts of clear-cutting. Retention of habitat trees and deadwood has since become common practice also in continuous-cover forests of Central Europe. While the use of retention in these forests is plausible, the evidence base for its application is lacking, trade-offs have not been quantified, it is not clear what support it receives from forest owners and other stakeholders and how it is best integrated into forest management practices. The Research Training Group ConFoBi (Conservation of Forest Biodiversity in Multiple-use Landscapes of Central Europe) focusses on the effectiveness of retention forestry, combining ecological studies on forest biodiversity with social and economic studies of biodiversity conservation across multiple spatial scales. The aim of ConFoBi is to assess whether and how structural retention measures are appropriate for the conservation of forest biodiversity in uneven-aged and selectively harvested continuous-cover forests of temperate Europe. The study design is based on a pool of 135 plots (1 ha) distributed along gradients of forest connectivity and structure. The main objectives are (a) to investigate the effects of structural elements and landscape context on multiple taxa, including different trophic and functional groups, to evaluate the effectiveness of retention practices for biodiversity conservation; (b) to analyze how forest biodiversity conservation is perceived and practiced, and what costs and benefits it creates; and (c) to identify how biodiversity conservation can be effectively integrated in multi-functional forest management. ConFoBi will quantify retention levels required across the landscape, as well as the socio-economic prerequisites for their implementation by forest owners and managers. ConFoBi's research results will provide an evidence base for integrating biodiversity conservation into forest management in temperate forests.

20.
Insects ; 11(2)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979080

RESUMEN

Nectar is crucial to maintain plant-pollinator mutualism. Nectar quality (nutritional composition) can vary strongly between individuals of the same plant species. The factors driving such inter-individual variation have however not been investigated closer. We investigated nectar quality of field scabious, Knautia arvensis in different grassland plant communities varying in species composition and richness to assess whether nectar quality can be affected by the surrounding plant community. We analyzed (with high performance liquid chromatography) the content of carbohydrates, overall amino acids, and essential amino acids. Amino acid and carbohydrate concentrations and proportions varied among plant individuals and with the surrounding plant community but were not related to the surrounding plant species richness. Total and individual carbohydrate concentrations were lowest, while proportions of the essential amino acids, valine, isoleucine, leucine (all phagostimulatory), and lysine were highest in plant species communities of the highest diversity. Our results show that K. arvensis nectar chemistry varies with the composition of the surrounding plant community, which may alter the taste and nutritional value and thus affect the plant's visitor spectrum and visitation rate. However, the strong inter-individual variation in nectar quality requires additional studies (e.g., in semi-field studies) to disentangle different biotic and abiotic factors contributing to inter-individual nectar chemistry in a plant-community context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...