RESUMEN
p-Coumaric acid (p-CA) is a phenolic compound that plays a crucial role in mediating multiple signaling pathways. It serves as a defense strategy against plant wounding and is also presumed to play a role in plant development and lignin biosynthesis. This study aimed to investigate the physiological and ionomic effect of p-CA on chia seedlings under salt stress. To this end, chia seedlings were supplemented with Nitrosol® containing 100 µM of p-CA, 100 of mM NaCI, and their combined (100 mM NaCI + 100 µM p-CA) solutions in 2-day intervals for a period of 14 days along with a control containing Nitrosol® only. The treatment of chia seedlings with 100 mM of NaCI decreased their growth parameters and the content of the majority of the essential macro-elements (K, P, Ca, and Mg), except for that of sodium (Na). The simultaneous application of p-CA and a salt stress treatment (p-CA + NaCI) alleviated the effect of salt stress on chia seedlings' shoots, and this was indicated by the increase in chia biomass. Furthermore, this combined treatment significantly enhanced the levels of the essential microelements Mg and Ca. In summary, this brief report is built on the foundational work of our previous study, which demonstrated that p-CA promotes growth in chia seedlings via activation of O2-. In this brief report, we further show that p-CA not only promotes growth but also mitigates the effects of salt stress on chia seedlings. This mitigation effect may result from the presence of Mg and Ca, which are vital nutrients involved in regulating metabolic pathways, enzyme activity, and amino acid synthesis.
RESUMEN
Alternaria alternata is an opportunistic phytopathogen that negatively impact the growth and production of a wide variety of host plants. In this study, we evaluated the antifungal potential of biogenic ZnO, and bimetallic silver and zinc oxide (Ag/ZnO) nanoparticles synthesized using seed extract of Abrus precatorious and characterized using different analytical tools. In vitro antifungal potentials of ZnO and Ag/ZnO nanoparticles were carried out using the food poison technique. Morphological and ultrastructure of the A. alternata treated with the nanoparticles were carried out using high resolution scanning and transmission electron microscopy (HRSEM and HRTEM). In addition, changes in polysaccharide production, chitin content and enzymatic (cellulase and lipase) activities of A. alternata were assayed. Double peak signifying a UVmax of 353.88 and 417.25 nm representing Ag and ZnO respectively was formed in the bimetallic nanoparticles. HRSEM and HRTEM results shows agglomerated nanoparticles with particle and crystallite size of 23.94 and 16.84 nm for ZnO nanoparticles, 35.12 and 28.99 nm for Ag/ZnO nanoparticles respectively. In vitro antifungal assay shows a significant concentration-dependent inhibition (p < 0.05) of A. alternata mycelia with highest percentage inhibition of 73.93 % (ZnO nanoparticles) and 68.26 % (Ag/ZnO nanoparticles) at 200 ppm. HRSEM and HRTEM micrographs of the treated A. alternata mycelia shows alteration of the cellular structure, clearance of the cytoplasmic organelles and localization of the nanoparticles within the cell. A. alternata treated with 200 ppm nanoparticles show a significant decrease (p < 0.05) in the polysaccharides and chitin contents, cellulase and lipase activities. The results suggests that ZnO and Ag/ZnO nanoparticles mode of action may be via alteration of the fungal cell wall through the inhibition of polysaccharides, chitin, cellulases and lipases synthesis. ZnO and Ag/ZnO nanoparticles may be a promising tool for the management and control of disease causing fungal phytopathogens.
RESUMEN
Objective: Medicinal herbs with a phytonutrient background has been applied globally as major alternatives to ameliorate the continuous increase in rheumatoid arthritis cases worldwide. We herein aimed to critically examine the bioactive components of the medicinal herb Piper sarmentosum Roxb leaf fractionated extract for its potential to inhibit the influx of interleukin-6 (IL-6) in rheumatoid arthritis. Methods: The Schrödinger platform was employed as the main computational acumen for the screening of bioactive compounds identified and reference compounds subjected to molecular simulation (MDS) for analyzing the stability of docked complexes to assess fluctuations and conformational changes during protein-ligand interactions. Results: The values of the simulatory properties and principal component analysis (PCA) revealed the good stability of these phytochemicals in the active pocket of interleukin-6 (IL-6). Discussion: Our findings reveal new strategies in which these phytochemicals are potential inhibitory agents that can be modified and further evaluated to develop more effective agents for the management of rheumatoid arthritis, thereby providing a better understanding and useful model for the reproduction and/or discovery of new drugs for the management of rheumatoid arthritis and its complications.
RESUMEN
Due to their stationary nature, plants are exposed to a diverse range of biotic and abiotic stresses, of which heavy metal (HM) stress poses one of the most detrimental abiotic stresses, targeting diverse plant processes. HMs instigate the overproduction of reactive oxygen species (ROS), and to mitigate the adverse effects of ROS, plants induce multiple defence mechanisms. Besides the negative implications of overproduction of ROS, these molecules play a multitude of signalling roles in plants, acting as a central player in the complex signalling network of cells. One of the ROS-associated signalling mechanisms is the mitogen-activated protein kinase (MAPK) cascade, a signalling pathway which transduces extracellular stimuli into intracellular responses. Plant MAPKs have been implicated in signalling involved in stress response, phytohormone regulation, and cell cycle cues. However, the influence of various HMs on MAPK activation has not been well documented. In this review, we address and summarise several aspects related to various HM-induced ROS signalling. Additionally, we touch on how these signals activate the MAPK cascade and the downstream transcription factors that influence plant responses to HMs. Moreover, we propose a workflow that could characterise genes associated with MAPKs and their roles during plant HM stress responses.
Asunto(s)
Sistema de Señalización de MAP Quinasas , Metales Pesados , Plantas , Metales Pesados/química , Metales Pesados/metabolismo , Metales Pesados/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Plantas/efectos de los fármacos , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Contaminantes Ambientales/metabolismo , Suelo/química , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidadRESUMEN
MAIN CONCLUSION: Plant Biomarkers are objective indicators of a plant's cellular state in response to abiotic and biotic stress factors. They can be explored in crop breeding and engineering to produce stress-tolerant crop species. Global food production safely and sustainably remains a top priority to feed the ever-growing human population, expected to reach 10 billion by 2050. However, abiotic and biotic stress factors negatively impact food production systems, causing between 70 and 100% reduction in crop yield. Understanding the plant stress responses is critical for developing novel crops that can adapt better to various adverse environmental conditions. Using plant biomarkers as measurable indicators of a plant's cellular response to external stimuli could serve as early warning signals to detect stresses before severe damage occurs. Plant biomarkers have received considerable attention in the last decade as pre-stress indicators for various economically important food crops. This review discusses some biomarkers associated with abiotic and biotic stress conditions and highlights their importance in developing stress-resilient crops. In addition, we highlighted some factors influencing the expression of biomarkers in crop plants under stress. The information presented in this review would educate plant researchers, breeders, and agronomists on the significance of plant biomarkers in stress biology research, which is essential for improving plant growth and yield toward sustainable food production.
Asunto(s)
Productos Agrícolas , Fitomejoramiento , Humanos , Productos Agrícolas/genética , Estrés Fisiológico , Desarrollo de la Planta , Adaptación FisiológicaRESUMEN
Raphanus sativus also known as radish is a member of the Brassicaceae family which is mainly cultivated for human and animal consumption. R. sativus growth and development is negatively affected by heavy metal stress. The metal zirconium (Zr) have toxic effects on plants and tolerance to the metal could be regulated by known signaling molecules such as methylglyoxal (MG). Therefore, in this study we investigated whether the application of the signaling molecule MG could improve the Zr tolerance of R. sativus at the seedling stage. We measured the following: seed germination, dry weight, cotyledon abscission (%), cell viability, chlorophyll content, malondialdehyde (MDA) content, conjugated diene (CD) content, hydrogen peroxide (H2O2) content, superoxide (O2â¢-) content, MG content, hydroxyl radical (·OH) concentration, ascorbate peroxidase (APX) activity, superoxide dismutase (SOD) activity, glyoxalase I (Gly I) activity, Zr content and translocation factor. Under Zr stress, exogenous MG increased the seed germination percentage, shoot dry weight, cotyledon abscission, cell viability and chlorophyll content. Exogenous MG also led to a decrease in MDA, CD, H2O2, O2â¢-, MG and ·OH, under Zr stress in the shoots. Furthermore, MG application led to an increase in the enzymatic activities of APX, SOD and Gly I as well as in the complete blocking of cotyledon abscission under Zr stress. MG treatment decreased the uptake of Zr in the roots and shoots. Zr treatment decreased the translocation factor of the Zr from roots to shoots and MG treatment decreased the translocation factor of Zr even more significantly compared to the Zr only treatment. Our results indicate that MG treatment can improve R. sativus seedling growth under Zr stress through the activation of antioxidant enzymes and Gly I through reactive oxygen species and MG signaling, inhibiting cotyledon abscission through H2O2 signaling and immobilizing Zr translocation.
Asunto(s)
Brassicaceae , Lactoilglutatión Liasa , Raphanus , Antioxidantes , Clorofila , Peróxido de Hidrógeno , Estrés Oxidativo , Piruvaldehído/toxicidad , Plantones , Superóxido Dismutasa , CirconioRESUMEN
Fungal and bacterial pathogens represent some of the greatest challenges facing crop production globally and account for about 20-40 % crop losses annually. This review highlights the use of ZnO NPs as antimicrobial agents and explores their mechanisms of actions against disease causing plant fungal pathogens. The behavior of ZnO NPs in soil and their interactions with the soil components were also highlighted. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. In addition, the reduction of ZnO NPs toxicity through surface modification and coating with silica is also addressed. Soil properties play a significant role in the dispersal, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transport of ZnO NPs into the soil might influence soil components and, as a result, plant physiology. The harmful effects of ZnO NPs on plants and fungi are caused by a variety of processes, the most important of which is the formation of reactive oxygen species, lysosomal instability, DNA damage, and the reduction of oxidative stress by direct penetration/liberation of Zn2+ ions in plant/fungal cells. Based on these highlighted areas, this review concludes that ZnO NPs exhibit its antifungal activity via generations of reactive oxygen species, coupled with the inhibition of various metabolic pathways. Despite the numerous advantages of ZnO NPs, there is need to regulate its uses to minimize the harmful effects that may arise from its applications in the soil and plants.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Suelo , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas/química , Hongos/metabolismoRESUMEN
Infectious diseases are constantly evolving to bypass antibiotics or create resistance against them. There is a piercing alarm for the need to improve the design of new effective antimicrobial agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity. This would guard public health in combating and overcoming stubborn pathogens and mitigate incurable diseases; however, the emergence of antimicrobial peptides' shortcomings ranging from untimely degradation by enzymes to difficulty in the design against specific targets is a major bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices, synthesis and characterization, their doping and coating, and the shortfall of these approaches. This review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The knowledge from this development would guide the future design of these novel peptides and allow the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment regimens in patients to enable them to have accommodating lifestyles.
Asunto(s)
Antiinfecciosos , Enfermedades Transmisibles , Humanos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinfecciosos/química , Enfermedades Transmisibles/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/químicaRESUMEN
BACKGROUND: Diabetes mellitus (DM) is a metabolic disorder that affects the body's ability to produce or use insulin. This study evaluated the hypoglycaemic activity of biosynthesized copper oxide nanoparticles (CuO-NPs) in alloxan-induced diabetic Wister rats. METHODS: CuO-NPs were synthesized via the green route and characterized using different analytical tools. Diabetes was induced intraperitoneally using 90 mg/kg body weight of alloxan monohydrate in albino rats. Thirty (30) rats were randomly divided into 5 groups of 6 rats each and orally treated for 21 days. Groups I and II were treated with 300 mg/kg bwt Cereus hildmannianus extract and CuO-NPs, respectively. Groups III and IV received 5 mg/kg bwt of Glibenclamide and 2 mL of normal saline, respectively, while Group V was left untreated as the diabetic control. Blood glucose (BG) levels and body weight changes were monitored at 3- and 7-day intervals, respectively, throughout 21-day treatment period. Lipid profiles, enzyme assays and histopathological studies of the liver were also carried out. RESULTS: Spheroidal tenorite phase of CuO-NPs with a crystallite size of 62.57 nm, surface area (20.64 m2 /g) and a UV-maximum absorption at 214.27 nm was formed. The diabetic rats treated with 300 mg/kg bwt CuO-NPs had the highest BG lowering ability (from 482.75 ± 27.70 to 124.50 ± 2.50 mg/dL). A significant difference (p < 0.05) in weight gain and serum enzymes was also observed in the CuO-NPs treated group compared with other groups. The CuO-NPs-treated group had a significant increase (p < 0.05) in HDL-cholesterol and a decrease in total cholesterol, triglycerides, LDL-cholesterol and VLDL-cholesterol compared with other groups. CONCLUSION: The green synthesized CuO-NPs nanoparticles significantly reduced (p < 0.05) blood glucose levels in rats and other associated indices and could serve as drug lead in the treatment of diabetes.
Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Animales , Ratas , Hipoglucemiantes/efectos adversos , Cobre/efectos adversos , Aloxano/efectos adversos , Glucemia , Extractos Vegetales/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Wistar , HDL-Colesterol , Peso Corporal , Óxidos/efectos adversosRESUMEN
The use of biological control agents as opposed to synthetic agrochemicals to control plant pathogens has gained momentum, considering their numerous advantages. The aim of this study is to investigate the biocontrol potential of plant bacterial isolates against Fusarium oxysporum, Fusarium proliferatum, Fusarium culmorum, and Fusarium verticillioides. Isolation, identification, characterization, and in vitro biocontrol antagonistic assays of these isolates against Fusarium species were carried out following standard protocols. The bacterial endophytes were isolated from Glycine max. L leaves (B1), Brassica napus. L seeds (B2), Vigna unguiculata seeds (B3), and Glycine max. L seeds (B4). The bacterial isolates were identified using 16S rRNA PCR sequencing. A phylogenetic analysis shows that the bacterial isolates are closely related to Bacillus subtilis (B1) and Bacillus tequilensis (B2-B4), with an identity score above 98%. All the bacterial isolates produced a significant amount (p < 0.05) of indole acetic acid (IAA), siderophores, and protease activity. In vitro antagonistic assays of these isolates show a significant (p < 0.05) growth inhibition of the fungal mycelia in the following order: F. proliferatum > F. culmorum > F. verticillioides > F. oxysporum, compared to the control. The results suggest that these bacterial isolates are good biocontrol candidates against the selected Fusarium species.
RESUMEN
Plant immobility renders plants constantly susceptible to various abiotic and biotic stresses. Abiotic and biotic stresses are known to produce reactive oxygen species (ROS), which cause comparable cellular secondary reactions (osmotic or oxidative stress), leading to agricultural productivity constraints worldwide. To mitigate the challenges caused by these stresses, plants have evolved a variety of adaptive strategies. Phenolic acids form a key component of these strategies, as they are predominantly known to be secreted by plants in response to abiotic or biotic stresses. Phenolic acids can be divided into different subclasses based on their chemical structures, such as hydroxybenzoic acids and hydroxycinnamic acids. This review analyzes hydroxycinnamic acids and their derivatives as they increase under stressful conditions, so to withstand environmental stresses they regulate physiological processes through acting as signaling molecules that regulate gene expression and biochemical pathways. The mechanism of action used by hydroxycinnamic acid involves minimization of oxidative damage to maintain cellular homeostasis and protect vital cellular components from harm. The purpose of this review is to highlight the potential of hydroxycinnamic acid metabolites/derivatives as potential antioxidants. We review the uses of different secondary metabolites associated with hydroxycinnamic acid and their contributions to plant growth and development.
RESUMEN
Colorectal cancer (CRC) is among the leading causes of cancer mortality. The lifetime risk of developing CRC is about 5% in adult males and females. CRC is usually diagnosed at an advanced stage, and at this point therapy has a limited impact on cure rates and long-term survival. Novel and/or improved CRC therapeutic options are needed. The involvement of microRNAs (miRNAs) in cancer development has been reported, and their regulation in many oncogenic pathways suggests their potent tumor suppressor action. Although miRNAs provide a promising therapeutic approach for cancer, challenges such as biodegradation, specificity, stability and toxicity, impede their progression into clinical trials. Nanotechnology strategies offer diverse advantages for the use of miRNAs for CRC-targeted delivery and therapy. The merits of using nanocarriers for targeted delivery of miRNA-formulations are presented herein to highlight the role they can play in miRNA-based CRC therapy by targeting different stages of the disease.
RESUMEN
Abiotic and biotic stress factors negatively influence the growth, yield, and nutritional value of economically important food and feed crops. These climate-change-induced stress factors, together with the ever-growing human population, compromise sustainable food security for all consumers across the world. Agrochemicals are widely used to increase crop yield by improving plant growth and enhancing their tolerance to stress factors; however, there has been a shift towards natural compounds in recent years due to the detrimental effect associated with these agrochemicals on crops and the ecosystem. In view of these, the use of phenolic biostimulants as opposed to artificial fertilizers has gained significant momentum in crop production. Seaweeds are marine organisms and excellent sources of natural phenolic compounds that are useful for downstream agricultural applications such as promoting plant growth and improving resilience against various stress conditions. In this review, we highlight the different phenolic compounds present in seaweed, compare their extraction methods, and describe their downstream applications in agriculture.
RESUMEN
Fusarium solani is worrisome because it severely threatens the agricultural productivity of certain crops such as tomatoes and peas, causing the general decline, wilting, and root necrosis. It has also been implicated in the infection of the human eye cornea. It is believed that early detection of the fungus could save these crops from the destructive activities of the fungus through early biocontrol measures. Therefore, the present work aimed to build a sensitive model of novel anti-Fusarium solani antimicrobial peptides (AMPs) against the fungal cutinase 1 (CUT1) protein for early, sensitive and accurate detection. Fusarium solani CUT1 receptor protein 2D secondary structure, model validation, and functional motifs were predicted. Subsequently, anti-Fusarium solani AMPs were retrieved, and the HMMER in silico algorithm was used to construct a model of the AMPs. After their structure predictions, the interaction analysis was analyzed for the Fusarium solani CUT1 protein and the generated AMPs. The putative anti-Fusarium solani AMPs bound the CUT1 protein very tightly, with OOB4 having the highest binding energy potential for HDock. The pyDockWeb generated high electrostatic, desolvation, and low van der Waals energies for all the AMPs against CUT1 protein, with OOB1 having the most significant interaction. The results suggested the utilization of AMPs for the timely intervention, control, and management of these crops, as mentioned earlier, to improve their agricultural productivity and reduce their economic loss and the use of HMMER for constructing models for disease detection.
RESUMEN
We report the draft whole-genome sequence of the putative endophytic fungus Penicillium simplicissimum A4, isolated from the roots of Echium plantagineum plants. The genome was sequenced using PacBio technology with an estimated genome size of 39 Mb.
RESUMEN
There is a direct correlation between population growth and food demand. As the global population continues to rise, there is a need to scale up food production to meet the food demand of the population. In addition, the arable land over time has lost its naturally endowed nutrients. Hence, alternative measures such as fertilizers, pesticides, and herbicides are used to fortify the soil and scale up the production rate. As efforts are being made to meet this food demand and ensure food security, it is equally important to ensure food safety for consumption. Food safety measures need to be put in place throughout the food production chain lines. One of the fundamental measures is the use of biofertilizers or plant growth promoters instead of chemical or synthesized fertilizers, pesticides, and herbicides that poise several dangers to human and animal health. Biofertilizers competitively colonize plant root systems, which, in turn, enhance nutrient uptake, increase productivity and crop yield, improve plants' tolerance to stress and their resistance to pathogens, and improve plant growth through mechanisms such as the mobilization of essential elements, nutrients, and plant growth hormones. Biofertilizers are cost-effective and ecofriendly in nature, and their continuous usage enhances soil fertility. They also increase crop yield by up to about 10-40% by increasing protein contents, essential amino acids, and vitamins, and by nitrogen fixation. This review therefore highlighted different types of biofertilizers and the mechanisms by which they elicit their function to enhance crop yield to meet food demand. In addition, the review also addressed the role of microorganisms in promoting plant growth and the various organisms that are beneficial for enhancing plant growth.
RESUMEN
The quest for an extraordinary array of defense strategies is imperative to reduce the challenges of microbial attacks on plants and animals. Plant antimicrobial peptides (PAMPs) are a subset of antimicrobial peptides (AMPs). PAMPs elicit defense against microbial attacks and prevent drug resistance of pathogens given their wide spectrum activity, excellent structural stability, and diverse mechanism of action. This review aimed to identify the applications, features, production, expression, and challenges of PAMPs using its structure-activity relationship. The discovery techniques used to identify these peptides were also explored to provide insight into their significance in genomics, transcriptomics, proteomics, and their expression against disease-causing pathogens. This review creates awareness for PAMPs as potential therapeutic agents in the medical and pharmaceutical fields, such as the sensitive treatment of bacterial and fungal diseases and others and their utilization in preserving crops using available transgenic methods in the agronomical field. PAMPs are also safe to handle and are easy to recycle with the use of proteases to convert them into more potent antimicrobial agents for sustainable development.
Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Animales , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Productos Agrícolas , Moléculas de Patrón Molecular Asociado a PatógenosRESUMEN
p-Coumaric acid synthesis in plants involves the conversion of phenylalanine to trans-cinnamic acid via phenylalanine ammonia-lyase (PAL), which is then hydroxylated at the para-position under the action of trans-cinnamic acid 4-hydroxylase. Alternatively, some PAL enzymes accept tyrosine as an alternative substrate and convert tyrosine directly to p-coumaric acid without the intermediary of trans-cinnamic acid. In recent years, the contrasting roles of p-coumaric acid in regulating the growth and development of plants have been well-documented. To understand the contribution of trans-cinnamic acid 4-hydroxylase activity in p-coumaric acid-mediated plant growth, mineral content accumulation and the regulation of reactive oxygen species (ROS), we investigated the effect of piperonylic acid (a trans-cinnamic acid 4-hydroxylase inhibitor) on plant growth, essential macroelements, osmolyte content, ROS-induced oxidative damage, antioxidant enzyme activities and phytohormone levels in chia seedlings. Piperonylic acid restricted chia seedling growth by reducing shoot length, fresh weight, leaf area measurements and p-coumaric acid content. Apart from sodium, piperonylic acid significantly reduced the accumulation of other essential macroelements (such as K, P, Ca and Mg) relative to the untreated control. Enhanced proline, superoxide, hydrogen peroxide and malondialdehyde contents were observed. The inhibition of trans-cinnamic acid 4-hydroxylase activity significantly increased the enzymatic activities of ROS-scavenging enzymes such as superoxide dismutase, ascorbate peroxidase, catalase and guaiacol peroxidase. In addition, piperonylic acid caused a reduction in indole-3-acetic acid and salicylic acid content. In conclusion, the reduction in chia seedling growth in response to piperonylic acid may be attributed to a reduction in p-coumaric acid content coupled with elevated ROS-induced oxidative damage, and restricted mineral and phytohormone (indole-3-acetic acid and salicylic) levels.
RESUMEN
Introduction: Essential oils (EOs) have been demonstrated as efficacious against B. cinerea. However, the underpinning enzymatic and proteomic mechanism for these inhibitory effects is not entirely clear. Methods: Thus, this study examined the effects of lemon (Le) and lemongrass (Lg) EOs (individually and in combination) against B. cinerea based on enzymatic and proteomic analyses. Proteomics data are available via ProteomeXchange with identifier PXD038894. Results and discussion: Both EOs (individually and in combination) displayed abilities to induce scavenging as observed with the reduction of H2O2. Measured malondialdehyde (MDA) and superoxide dismutase (SOD) activity were increased in all EOs treated B. cinerea mycelia compared to the control. Ascorbate peroxidase (APX) activity was highest in Lg treated B. cinerea (206% increase), followed by combined (Le + Lg) treatment with 73% compared to the untreated control. Based on GC-MS analysis, the number of volatile compounds identified in lemon and lemongrass EOs were 7 and 10, respectively. Major chemical constituent of lemon EO was d-limonene (71%), while lemongrass EO was a-citral (50.1%). Based on the interrogated LC-MS data, 42 distinct proteins were identified, and 13 of these proteins were unique with 1, 8, and 4 found in Le-, Lg-, and (Le + Lg) EOs treated B. cinerea, respectively, and none in control. Overall, 72% of identified proteins were localized within cellular anatomical entity, and 28% in protein-complexes. Proteins involved in translation initiation, antioxidant activity, protein macromolecule adaptor activity and microtubule motor activity were only identified in the Lg and (Le + Lg) EOs treated B. cinerea mycelia, which was consistent with their APX activities.