Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biomater Sci Polym Ed ; 35(6): 851-868, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38310545

RESUMEN

To make tissue engineering a truly effective tool, it is necessary to understand how the patterns of specific tissue development are modulated by and depend on the artificial environment. Even the most advanced approaches still do not fully meet the requirements of practical engineering of tracheobronchial epithelium. This study aimed to test the ability of the synthetic and natural nonwoven scaffolds to support the formation of morphological sound airway epithelium including the basement membrane (BM). We also sought to identify the potential role of fibroblasts in this process. Our results showed that nonwoven scaffolds are generally suitable for producing well-differentiated tracheobronchial epithelium (with cilia and goblet cells), while the structure and functionality of the equivalents appeared to be highly dependent on the composition of the scaffolds. Unlike natural scaffolds, synthetic ones supported the formation of the epithelium only when epithelial cells were cocultured with fibroblasts. Fibroblasts also appeared to be obligatory for basal lamina formation, regardless of the type of the nonwoven material used. However, even in the presence of fibroblasts, the synthetic scaffolds were unable to support the formation of the epithelium and of the BM (in particular, basal lamina) as effectively as the natural scaffolds did.


Asunto(s)
Polímeros , Andamios del Tejido , Andamios del Tejido/química , Epitelio , Ingeniería de Tejidos/métodos , Fibroblastos
2.
Vet Sci ; 11(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38393109

RESUMEN

In this study, we used the Manchurian golden breed of quails. We assessed the efficacy of the food additives of the phytase from Obesumbacterium proteus encapsulated in the recombinant Yarrowia lipolytica yeast, which was supplied at a concentration of 500 phytase activity units per kg of the feed. One hundred fifty one-day-old quails were distributed into six treatment groups. The results showed that adding the O. proteus encapsulated phytase to the quails' diets improved live weight, body weight gain, and feed conversion compared to those in the control groups and the groups using a commercial phytase from Aspergillus ficuum. The results obtained during the experiments indicate a high degree of assimilation of phytate-containing feeds if the encapsulated phytase was fed by the quails compared to that in the other groups. We can conclude that the class D encapsulated phytase is an expedient additive to the diets possessing better kinetic features compared to the PhyA and PhyC classes phytases when it acts inside the quail's chyme.

3.
BioTech (Basel) ; 12(3)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37606442

RESUMEN

The paper proposed a new porous material for wound healing based on chitosan and C-phycocyanin (C-PC). In this work, C-PC was extracted from the cyanobacteria Arthrospira platensis biomass and purified through ammonium sulfate precipitation. The obtained C-PC with a purity index (PI) of 3.36 ± 0.24 was loaded into a chitosan sponge from aqueous solutions of various concentrations (250, 500, and 1000 mg/L). According to the FTIR study, chitosan did not form new bonds with C-PC, but acted as a carrier. The encapsulation efficiency value exceeded 90%, and the maximum loading capacity was 172.67 ± 0.47 mg/g. The release of C-PC from the polymer matrix into the saline medium was estimated, and it was found 50% of C-PC was released in the first hour and the maximum concentration was reached in 5-7 h after the sponge immersion. The PI of the released C-PC was 3.79 and 4.43 depending on the concentration of the initial solution.

4.
J Fungi (Basel) ; 8(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36422054

RESUMEN

The study analyzes the dynamics in the lipid profile of the Endomyces magnusii yeast during the long-lasting cultivation using the substrates of "enzymatic" or "oxidative" type. Moreover, we studied its changes upon calorie restriction (CR) (0.5% glucose) and glucose depletion (0.2% glucose). Di-(DAGs), triacylglycerides (TAGs) and free fatty acids (FFAs) dominate in the storage lipid fractions. The TAG level was high in all the cultures tested and reached 80% of the total lipid amount. While being cultured on 2% substrates, the level of storage lipids decreased at the four-week stage, whereas upon CR their initially low amount doubled. Phosphatidylethanolamines (PE), sterols (St) (up to 62% of total lipids), phosphatidylcholines (PC), and phosphatidic acids (PA) (more than 40% of total lipids) were dominating in the membrane lipids of E magnusii. Upon CR at the late stationary growth stages (3-4 weeks), the total level of membrane lipid was two-fold higher than those on glycerol and 2% glucose. The palmitic acid C16:0 (from 10 to 23%), the palmitoleic acid C16:1 (from 4.3 to 15.9%), the oleic acid C18:1 (from 23.4 to 59.2%), and the linoleic acid C18:2 (from 10.8 to 49.2%) were the dominant fatty acids (FAs) of phospholipids. Upon glucose depletion (0.2% glucose), the total amount of storage and membrane lipids in the cells was comparable to that in the cells both on 2% and 0.5% glucose. High levels of PC and sphingolipids (SL) at the late stationary growth stages and an increased PA level throughout the whole experiment were typical for the membrane lipids composition upon the substrate depletion. There was shown a crucial role of St, PA, and a high share of the unsaturated FAs in the membrane phospholipids upon the adaptation of the E. magnusii yeast to the long-lasting cultivation upon the substrate restriction is shown. The autophagic processes in some fractions of the cell population provide the support of high level of lipid components at the late stages of cultivation upon substrate depletion under the CR conditions. CR is supposed to play the key role in regulating the lipid synthesis and risen resistance to oxidative stress, as well as its possible biotechnological application.

5.
Microorganisms ; 10(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36144311

RESUMEN

The study on the influence of different glucose concentrations (2%, 0.5%, and 0.2%) and glycerol (1%) on the morphological and physiological features, as well as the composition of soluble carbohydrates, was performed using Endomyces magnusii yeast. Two-factor analysis of variance with repetitions to process the data of the cell size changes showed that the substrate type affected cell size the most. The cells with 2% glucose were 30-35% larger than those growing on glycerol. The decrease in the initial glucose concentration up to 0.5-0.2% slightly changed the cell length. However, even in the logarithmic growth phase pseudo-mycelium of two to four cells appeared in the cultures when using low glucose, unlike those using glycerol. Throughout the whole experiment, more than 90% of the populations remained viable on all of the substrates tested. The ability for colony formation decreased during aging. Nevertheless, at the three-week stage, upon substrate restriction (0.2% glucose), it was twice higher than those under the other conditions. The respiration rate also decreased and exceeded not more than 10% of that in the logarithmic phase. By the end of the experiment, the cyanide-sensitive respiration share decreased up to 40% for all types of substrates. The study of soluble cytosol carbohydrates showed that the cultures using 2% glucose and 1% glycerol contained mainly arabitol and mannitol, while at low glucose concentrations they were substituted for inositol. The formation of inositol is supposed to be related to pseudo-mycelium formation. The role of calorie restriction in the regulation of carbohydrate synthesis and the composition in the yeast and its biotechnological application is under consideration.

6.
Polymers (Basel) ; 13(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34641078

RESUMEN

Humic substances (HS) are natural supramolecular systems of high- and low-molecular-weight compounds with distinct immunomodulatory and protective properties. The key beneficial biological activity of HS is their antioxidant activity. However, systematic studies of the antioxidant activity of HS against biologically relevant peroxyl radicals are still scarce. The main objective of this work was to estimate the antioxidant capacity (AOC) of a broad set of HS widely differing in structure using an oxygen radical absorption capacity (ORAC) assay. For this purpose, 25 samples of soil, peat, coal, and aquatic HS and humic-like substances were characterized using elemental analysis and quantitative 13C solution-state NMR. The Folin-Ciocalteu method was used to quantify total phenol (TP) content in HS. The determined AOC values varied in the range of 0.31-2.56 µmol Trolox eqv. mg-1, which is close to the values for ascorbic acid and vitamin E. Forward stepwise regression was used to reveal the four main factors contributing to the AOC value of HS: atomic C/N ratio, content of O-substituted methine and methoxyl groups, and TP. The results obtained clearly demonstrate the dependence of the AOC of HS on both phenolic and non-phenolic moieties in their structure, including carbohydrate fragments.

7.
Biomed Mater ; 16(1): 015002, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33245048

RESUMEN

The skin is a combination of two different types of tissue-epithelial and connective (mesenchymal). The outer protective layer of the skin, the epidermis, consists of multiple layers of keratinocytes residing on the basement membrane that separates them from the underlying dermis, which consists of a well-vascularized fibrous extracellular matrix seeded mainly by fibroblasts and mesenchymal stromal cells. These skin features suggest that the development of a fibroblast-friendly porous scaffold covered with a flat dense sheath mimicking the basement membrane, and sufficient to support keratinocyte attachment, would be a reasonable approach in the generation of clinically-relevant skin substitutes useful for reconstructive dermatology and burn treatment. Therefore, we developed a procedure to obtain biocompatible composite bilayer scaffolds comprising a spongy dermis-like body (supporting vascularization and appropriate fibroblast and multipotent stromal cell activity) fused with a film-like cover (supporting keratinocyte attachment, growth and differentiation). The sodium alginate (SA), an algae-derived biopolymer, has been used as a base component for these scaffolds while collagen (CL) and fibrinogen (FG) were used as minor additives in variable concentrations. The slow rates of composite SA-based scaffold biodegradation were achieved by using Ba2+ as cross-linking cations. By manipulating the SA/CL/FG ratio we managed to obtain sponge scaffolds with highly interconnected porous structures, with an average pore size ranging from 60 to 300 µm, and sufficient tensile strength (3.12-5.26 MPa). The scaffolds biocompatibility with the major human skin cell types was confirmed by seeding the scaffold sponge compartment with primary skin fibroblasts and subcutaneous adipose-derived stromal cells while the film side biocompatibility was tested using primary human keratinocytes. The obtained results have shown that bilayer alginate-based scaffolds have biological and mechanical properties comparable with CL scaffolds but surpass them in cost efficiency and vascularization ability in the subcutaneous implantation model in laboratory mice.


Asunto(s)
Alginatos/química , Colágeno/química , Piel Artificial , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Fenómenos Biomecánicos , Adhesión Celular , Células Cultivadas , Matriz Extracelular/química , Matriz Extracelular/fisiología , Humanos , Queratinocitos/citología , Queratinocitos/fisiología , Ensayo de Materiales , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Neovascularización Fisiológica , Resistencia a la Tracción , Andamios del Tejido/química , Cicatrización de Heridas
8.
Microorganisms ; 8(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936585

RESUMEN

In this study, we evaluated the metabolic profile of the aerobic microorganism of Endomyces magnusii with a complete respiration chain and well-developed mitochondria system during long-lasting cultivation. The yeast was grown in batches using glycerol and glucose as the sole carbon source for a week. The profile included the cellular biological and chemical parameters, which determined the redox status of the yeast cells. We studied the activities of the antioxidant systems (catalases and superoxide dismutases), glutathione system enzymes (glutathione peroxidase and reductase), aconitase, as well as the main enzymes maintaining NADPH levels in the cells (glucose-6-phosphate dehydrogenase and NADP+-isocitrate dehydrogenase) during aging of Endomyces magnusii on two kinds of substrates. We also investigated the dynamics of change in oxidized and reduced glutathione, conjugated dienes, and reactive oxidative species in the cells at different growth stages, including the deep stationary stages. Our results revealed a similar trend in the changes in the activity of all the enzymes tested, which increased 2-4-fold upon aging. The yeast cytosol had a very high reduced glutathione content, 22 times than that of Saccharomyces cerevisiae, and remained unchanged during growth, whereas there was a 7.5-fold increase in the reduced glutathione-to-oxidized glutathione ratio. The much higher level of reactive oxidative species was observed in the cells in the late and deep stationary phases, especially in the cells using glycerol. Cell aging of the culture grown on glycerol, which promotes active oxidative phosphorylation in the mitochondria, facilitated the functioning of powerful antioxidant systems (catalases, superoxide dismutases, and glutathione system enzymes) induced by reactive oxidative species. Moreover, it stimulated NADPH synthesis, regulating the cytosolic reduced glutathione level, which in turn determines the redox potential of the yeast cell during the early aging process.

9.
Cell Prolif ; 52(3): e12598, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30900363

RESUMEN

OBJECTIVES: The conversion of tissue engineering into a routine clinical tool cannot be achieved without a deep understanding of the interaction between cells and scaffolds during the process of tissue formation in an artificial environment. Here, we have investigated the cultivation conditions and structural features of the biodegradable non-woven material in order to obtain a well-differentiated human airway epithelium. MATERIALS AND METHODS: The bilayered scaffold was fabricated by electrospinning technology. The efficiency of the scaffold has been evaluated using MTT cell proliferation assay, histology, immunofluorescence and electron microscopy. RESULTS: With the use of a copolymer of chitosan-gelatin-poly-l-lactide, a bilayered non-woven scaffold was generated and characterized. The optimal structural parameters of both layers for cell proliferation and differentiation were determined. The basal airway epithelial cells differentiated into ciliary and goblet cells and formed pseudostratified epithelial layer on the surface of the scaffold. In addition, keratinocytes formed a skin equivalent when seeded on the same scaffold. A comparative analysis of growth and differentiation for both types of epithelium was performed. CONCLUSIONS: The structural parameters of nanofibres should be selected experimentally depending on polymer composition. The major challenges on the way to obtain the well-differentiated equivalent of respiratory epithelium on non-woven scaffold include the following: the balance between scaffold permeability and thickness, proper combination of synthetic and natural components, and culture conditions sufficient for co-culturing of airway epithelial cells and fibroblasts. For generation of skin equivalent, the lack of diffusion is not so critical as for pseudostratified airway epithelium.


Asunto(s)
Ingeniería de Tejidos/métodos , Andamios del Tejido , Tráquea/citología , Materiales Biocompatibles/química , Fenómenos Biomecánicos , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Quitosano/química , Técnicas de Cocultivo , Células Epiteliales/citología , Fibroblastos/citología , Gelatina/química , Humanos , Queratinocitos/citología , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Nanofibras/química , Nanofibras/ultraestructura , Poliésteres/química , Andamios del Tejido/química , Tráquea/crecimiento & desarrollo , Tráquea/fisiología
10.
J Agric Food Chem ; 65(51): 11157-11169, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29206449

RESUMEN

Availability of Fe in soil to plants is closely related to the presence of humic substances (HS). Still, the systematic data on applicability of iron-based nanomaterials stabilized with HS as a source for plant nutrition are missing. The goal of our study was to establish a connection between properties of iron-based materials stabilized by HS and their bioavailability to plants. We have prepared two samples of leonardite HS-stabilized iron-based materials with substantially different properties using the reported protocols and studied their physical chemical state in relation to iron uptake and other biological effects. We used Mössbauer spectroscopy, XRD, SAXS, and TEM to conclude on iron speciation, size, and crystallinity. One material (Fe-HA) consisted of polynuclear iron(III) (hydr)oxide complexes, so-called ferric polymers, distributed in HS matrix. These complexes are composed of predominantly amorphous small-size components (<5 nm) with inclusions of larger crystalline particles (the mean size of (11 ± 4) nm). The other material was composed of well-crystalline feroxyhyte (δ'-FeOOH) NPs with mean transverse sizes of (35 ± 20) nm stabilized by small amounts of HS. Bioavailability studies were conducted on wheat plants under conditions of iron deficiency. The uptake studies have shown that small and amorphous ferric polymers were readily translocated into the leaves on the level of Fe-EDTA, whereas relatively large and crystalline feroxyhyte NPs were mostly sorbed on the roots. The obtained data are consistent with the size exclusion limits of cell wall pores (5-20 nm). Both samples demonstrated distinct beneficial effects with respect to photosynthetic activity and lipid biosynthesis. The obtained results might be of use for production of iron-based nanomaterials stabilized by HS with the tailored iron availability to plants. They can be applied as the only source for iron nutrition as well as in combination with the other elements, for example, for industrial production of "nanofortified" macrofertilizers (NPK).


Asunto(s)
Fertilizantes/análisis , Sustancias Húmicas/análisis , Hidróxidos/química , Hierro/química , Hierro/metabolismo , Nanopartículas/química , Triticum/metabolismo , Disponibilidad Biológica , Hidróxidos/metabolismo , Nanopartículas/metabolismo , Tamaño de la Partícula , Triticum/crecimiento & desarrollo , Difracción de Rayos X
11.
Sci Rep ; 6: 28869, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27350412

RESUMEN

Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.


Asunto(s)
Sustancias Húmicas/análisis , Minerales/metabolismo , Plantones/metabolismo , Triticum/metabolismo , Adaptación Fisiológica , Marcaje Isotópico , Fotosíntesis , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Haz Vascular de Plantas , Estrés Fisiológico , Tritio/metabolismo
12.
J Chem Ecol ; 40(6): 643-52, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24859517

RESUMEN

Humic substances (HS) represent the major reservoir of carbon (C) in ecosystems, and their turnover is crucial for understanding the global C cycle. Although basidiomycetes clearly have a role in HS degradation, much less is known about the effect of HS on fungal traits. We studied the alteration of physiological, biochemical, and morphological characteristics of Trametes maxima in the presence of HS. Both complete medium and minimal (C-limited) medium mimicking natural environmental conditions were used. Adding HS led to increased biomass yield, but under C-limited conditions the effect was more apparent. This result indicated that HS were used as an additional substrate and agreed with data showing a greater penetration of tritium-labeled HS into the cell interior under C-limited conditions. Humic substances induced ultra-structural changes in fungal cells, especially under C limitation, including reducing the thicknesses of the hyphal sheath and cell wall. In the minimal medium, cellular respiration increased nearly three-fold under HS application, while the corresponding effect in complete medium was lower. In addition, in the presence of inhibitors, HS stimulated either the cytochrome or the alternative pathway of respiration, depending on presence or absence of glucose in the medium. Our results suggest that, under conditions mimicking the natural environment, HS may play three major roles: as a surplus substrate for fungal growth, as a factor positively affecting cell morphology, and as an activator of physiological respiration.


Asunto(s)
Sustancias Húmicas , Trametes/efectos de los fármacos , Trametes/crecimiento & desarrollo , Trametes/metabolismo , Carbono , Sustancias Húmicas/análisis , Microscopía Electrónica de Rastreo , Micología/métodos , Especies Reactivas de Oxígeno/metabolismo , Trametes/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA