Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(18): e202117000, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35133707

RESUMEN

Ni,Fe-containing carbon monoxide dehydrogenases (CODHs) catalyze the reversible reduction of CO2 to CO. Several anaerobic microorganisms encode multiple CODHs in their genome, of which some, despite being annotated as CODHs, lack a cysteine of the canonical binding motif for the active site Ni,Fe-cluster. Here, we report on the structure and reactivity of such a deviant enzyme, termed CooS-VCh . Its structure reveals the typical CODH scaffold, but contains an iron-sulfur-oxo hybrid-cluster. Although closely related to true CODHs, CooS-VCh catalyzes neither CO oxidation, nor CO2 reduction. The active site of CooS-VCh undergoes a redox-dependent restructuring between a reduced [4Fe-3S]-cluster and an oxidized [4Fe-2S-S*-2O-2(H2 O)]-cluster. Hydroxylamine, a slow-turnover substrate of CooS-VCh , oxidizes the hybrid-cluster in two structurally distinct steps. Overall, minor changes in CODHs are sufficient to accommodate a Fe/S/O-cluster in place of the Ni,Fe-heterocubane-cluster of CODHs.


Asunto(s)
Dióxido de Carbono , Proteínas Hierro-Azufre , Aldehído Oxidorreductasas/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Proteínas Hierro-Azufre/metabolismo , Complejos Multienzimáticos , Níquel/química , Oxidación-Reducción
2.
Inorg Chem ; 60(23): 17498-17508, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757735

RESUMEN

Bimetallic active sites in enzymes catalyze small-molecule conversions that are among the top 10 challenges in chemistry. As different metal cofactors are typically incorporated in varying protein scaffolds, it is demanding to disentangle the individual contributions of the metal and the protein matrix to the activity. Here, we compared the structure, properties, and hydrogen peroxide reactivity of four homobimetallic cofactors (Mn(II)2, Fe(II)2, Co(II)2, Ni(II)2) that were reconstituted into a four-helix bundle protein. Reconstituted proteins were studied in solution and in crystals. All metals bind with high affinity and yield similar cofactor structures. Cofactor variants react with H2O2 but differ in their turnover rates, accumulated oxidation states, and trapped peroxide-bound intermediates. Varying the metal composition thus creates opportunities to tune the reactivity of the bimetallic cofactor and to study and functionalize reactive species.


Asunto(s)
Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Metales Pesados/metabolismo , Catalasa/química , Peróxido de Hidrógeno/química , Metales Pesados/química , Oxidación-Reducción
3.
Transgenic Res ; 26(4): 529-539, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28493168

RESUMEN

Potatoes are a promising system for industrial production of the biopolymer cyanophycin as a second compound in addition to starch. To assess the efficiency in the field, we analysed the stability of the system, specifically its sensitivity to environmental factors. Field and greenhouse trials with transgenic potatoes (two independent events) were carried out for three years. The influence of environmental factors was measured and target compounds in the transgenic plants (cyanophycin, amino acids) were analysed for differences to control plants. Furthermore, non-target parameters (starch content, number, weight and size of tubers) were analysed for equivalence with control plants. The huge amount of data received was handled using modern statistical approaches to model the correlation between influencing environmental factors (year of cultivation, nitrogen fertilization, origin of plants, greenhouse or field cultivation) and key components (starch, amino acids, cyanophycin) and agronomic characteristics. General linear models were used for modelling, and standard effect sizes were applied to compare conventional and genetically modified plants. Altogether, the field trials prove that significant cyanophycin production is possible without reduction of starch content. Non-target compound composition seems to be equivalent under varying environmental conditions. Additionally, a quick test to measure cyanophycin content gives similar results compared to the extensive enzymatic test. This work facilitates the commercial cultivation of cyanophycin potatoes.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/metabolismo , Almidón/metabolismo
4.
Microbiology (Reading) ; 162(3): 526-536, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26781249

RESUMEN

Most cyanobacteria use a single type of cyanophycin synthetase, CphA1, to synthesize the nitrogen-rich polymer cyanophycin. The genomes of many N2-fixing cyanobacteria contain an additional gene that encodes a second type of cyanophycin synthetase, CphA2. The potential function of this enzyme has been debated due to its reduced size and the lack of one of the two ATP-binding sites that are present in CphA1. Here, we analysed CphA2 from Anabaena variabilis ATCC 29413 and Cyanothece sp. PCC 7425. We found that CphA2 polymerized the dipeptide ß-aspartyl-arginine to form cyanophycin. Thus, CphA2 represents a novel type of cyanophycin synthetase. A cphA2 disruption mutant of A. variabilis was generated. Growth of this mutant was impaired under high-light conditions and nitrogen deprivation, suggesting that CphA2 plays an important role in nitrogen metabolism under N2-fixing conditions. Electron micrographs revealed that the mutant had fewer cyanophycin granules, but no alteration in the distribution of granules in its cells was observed. Localization of CphA2 by immunogold electron microscopy demonstrated that the enzyme is attached to cyanophycin granules. Expression of CphA1 and CphA2 was examined in Anabaena WT and cphA mutant cells. Whilst the CphA1 level increased upon nitrogen deprivation, the CphA2 level remained nearly constant.


Asunto(s)
Anabaena variabilis/enzimología , Anabaena variabilis/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Cyanothece/enzimología , Cyanothece/metabolismo , Péptido Sintasas/metabolismo , Anabaena variabilis/genética , Anabaena variabilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Dipéptidos/metabolismo , Técnicas de Inactivación de Genes , Luz , Nitrógeno/metabolismo , Péptido Sintasas/genética
5.
Microbiology (Reading) ; 161(Pt 5): 1050-1060, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25701735

RESUMEN

L-serine is one of the proteinogenic amino acids and participates in several essential processes in all organisms. In plants, the light-dependent photorespiratory and the light-independent phosphoserine pathways contribute to serine biosynthesis. In cyanobacteria, the light-dependent photorespiratory pathway for serine synthesis is well characterized, but the phosphoserine pathway has not been identified. Here, we investigated three candidate genes for enzymes of the phosphoserine pathway in Synechocystis sp. PCC 6803. Only the gene for the D-3-phosphoglycerate dehydrogenase is correctly annotated in the genome database, whereas the 3-phosphoserine transaminase and 3-phosphoserine phosphatase (PSP) proteins are incorrectly annotated and were identified here. All enzymes were obtained as recombinant proteins and showed the activities necessary to catalyse the three-step phosphoserine pathway. The genes coding for the phosphoserine pathway were found in most cyanobacterial genomes listed in CyanoBase. The pathway seems to be essential for cyanobacteria, because it was impossible to mutate the gene coding for PSP in Synechocystis sp. PCC 6803 or in Synechococcus elongatus PCC 7942. A model approach indicates a 30-60% contribution of the phosphoserine pathway to the overall serine pool. Hence, this study verified that cyanobacteria, similar to plants, use the phosphoserine pathway in addition to photorespiration for serine biosynthesis.


Asunto(s)
Luz , Redes y Vías Metabólicas , Fosfoserina/metabolismo , Serina/metabolismo , Synechocystis/fisiología , Secuencia de Aminoácidos , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
6.
Microbiology (Reading) ; 160(Pt 12): 2807-2819, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25320362

RESUMEN

The polyphosphate glucokinases can phosphorylate glucose to glucose 6-phosphate using polyphosphate as the substrate. ORF all1371 encodes a putative polyphosphate glucokinase in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Here, ORF all1371 was heterologously expressed in Escherichia coli, and its purified product was characterized. Enzyme activity assays revealed that All1371 is an active polyphosphate glucokinase that can phosphorylate both glucose and mannose in the presence of divalent cations in vitro. Unlike many other polyphosphate glucokinases, for which nucleoside triphosphates (e.g. ATP or GTP) act as phosphoryl group donors, All1371 required polyphosphate to confer its enzymic activity. The enzymic reaction catalysed by All1371 followed classical Michaelis-Menten kinetics, with kcat = 48.2 s(-1) at pH 7.5 and 28 °C and KM = 1.76 µM and 0.118 mM for polyphosphate and glucose, respectively. Its reaction mechanism was identified as a particular multi-substrate mechanism called the 'bi-bi ping-pong mechanism'. Bioinformatic analyses revealed numerous polyphosphate-dependent glucokinases in heterocyst-forming cyanobacteria. Viability of an Anabaena sp. PCC 7120 mutant strain lacking all1371 was impaired under nitrogen-fixing conditions. GFP promoter studies indicate expression of all1371 under combined nitrogen deprivation. All1371 might play a substantial role in Anabaena sp. PCC 7120 under these conditions.


Asunto(s)
Anabaena/enzimología , Glucoquinasa/metabolismo , Anabaena/genética , Anabaena/fisiología , Cationes Bivalentes/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Glucoquinasa/genética , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Manosa/metabolismo , Viabilidad Microbiana , Polifosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Temperatura
7.
J Biotechnol ; 158(1-2): 50-8, 2012 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-22244982

RESUMEN

A chimeric cyanophycin synthetase gene composed of the cphATe coding region from the cyanobacterium Thermosynechococcus elongatus BP-1, the constitutive 35S promoter and the plastid targeting sequence of the integral photosystem II protein PsbY was transferred to the tobacco variety Petit Havanna SRI and the commercial potato starch production variety Albatros. The resulting constitutive expression of cyanophycin synthetase leads to polymer contents in potato leaf chloroplasts of up to 35 mg/g dry weight and in tuber amyloplasts of up to 9 mg/g dry weight. Both transgenic tobacco and potato were used for the development of isolation methods applicable for large-scale extraction of the polymer. Two different procedures were developed which yielded polymer samples of 80 and 90% purity, respectively.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Nicotiana/genética , Péptido Sintasas/genética , Solanum tuberosum/genética , Proteínas Bacterianas/química , Cloroplastos/química , Cloroplastos/genética , Cianobacterias/genética , Hojas de la Planta/química , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Polímeros/química
8.
Plant Biotechnol J ; 7(9): 883-98, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19843250

RESUMEN

The production of biodegradable polymers that can be used to substitute petrochemical compounds in commercial products in transgenic plants is an important challenge for plant biotechnology. Nevertheless, it is often accompanied by reduced plant fitness. To decrease the phenotypic abnormalities of the sprout and to increase polymer production, we restricted cyanophycin accumulation to the potato tubers by using the cyanophycin synthetase gene (cphA(Te)) from Thermosynechococcus elongatus BP-1, which is under the control of the tuber-specific class 1 promoter (B33). Tuber-specific cytosolic (pB33-cphA(Te)) as well as tuber-specific plastidic (pB33-PsbY-cphA(Te)) expression resulted in significant polymer accumulation solely in the tubers. In plants transformed with pB33-cphA(Te), both cyanophycin synthetase and cyanophycin were detected in the cytoplasm leading to an increase up to 2.3% cyanophycin of dry weight and resulting in small and deformed tubers. In B33-PsbY-cphA(Te) tubers, cyanophycin synthetase and cyanophycin were exclusively found in amyloplasts leading to a cyanophycin accumulation up to 7.5% of dry weight. These tubers were normal in size, some clones showed reduced tuber yield and sometimes exhibited brown sunken staining starting at tubers navel. During a storage period over of 32 weeks of one selected clone, the cyanophycin content was stable in B33-PsbY-cphA(Te) tubers but the stress symptoms increased. However, all tubers were able to germinate. Nitrogen fertilization in the greenhouse led not to an increased cyanophycin yield, slightly reduced protein content, decreased starch content, and changes in the amounts of bound and free arginine and aspartate, as compared with control tubers were observed.


Asunto(s)
Proteínas Bacterianas/genética , Péptido Sintasas/genética , Proteínas de Plantas/biosíntesis , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Proteínas Bacterianas/metabolismo , Citosol/enzimología , Regulación de la Expresión Génica de las Plantas , Péptido Sintasas/metabolismo , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plastidios/enzimología , Regiones Promotoras Genéticas , Solanum tuberosum/genética
9.
Plant Biotechnol J ; 6(4): 321-36, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18282176

RESUMEN

The production of biodegradable polymers in transgenic plants is an important challenge in plant biotechnology; nevertheless, it is often accompanied by reduced plant fitness. In order to decrease the phenotypic abnormalities caused by cytosolic production of the biodegradable polymer cyanophycin, and to increase polymer accumulation, four translocation pathway signal sequences for import into chloroplasts were individually fused to the coding region of the cyanophycin synthetase gene (cphA(Te)) of Thermosynechococcus elongatus BP-1, resulting in the constructs pRieske-cphA(Te), pCP24-cphA(Te), pFNR-cphA(Te) and pPsbY-cphA(Te). These constructs were expressed in Nicotiana tabacum var. Petit Havana SRI under the control of the constitutive cauliflower mosaic virus (CaMV) 35S promoter. Three of the four constructs led to polymer production. However, only the construct pPsbY-cphA(Te) led to cyanophycin accumulation exclusively in chloroplasts. In plants transformed with the pCP24-cphA(Te) and pFNR-cphA(Te) constructs, water-soluble and water-insoluble forms of cyanophycin were only located in the cytoplasm, which resulted in phenotypic changes similar to those observed in plants transformed with constructs lacking a targeting sequence. The plants transformed with pPsbY-cphA(Te) produced predominantly the water-insoluble form of cyanophycin. The polymer accumulated to up to 1.7% of dry matter in primary (T(0)) transformants. Specific T(2) plants produced 6.8% of dry weight as cyanophycin, which is more than five-fold higher than the previously published value. Although all lines tested were fertile, the progeny of the highest cyanophycin-producing line showed reduced seed production compared with control plants.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopolímeros/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Proteínas de Plantas/biosíntesis , Plastidios/metabolismo , Biopolímeros/biosíntesis , Regulación de la Expresión Génica de las Plantas , Fenotipo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Plantas Modificadas Genéticamente , Plastidios/genética , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...