Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(1): 100900, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36652909

RESUMEN

Brain metastases (BrMs) are the most common form of brain tumors in adults and frequently originate from lung and breast primary cancers. BrMs are associated with high mortality, emphasizing the need for more effective therapies. Genetic profiling of primary tumors is increasingly used as part of the effort to guide targeted therapies against BrMs, and immune-based strategies for the treatment of metastatic cancer are gaining momentum. However, the tumor immune microenvironment (TIME) of BrM is extremely heterogeneous, and whether specific genetic profiles are associated with distinct immune states remains unknown. Here, we perform an extensive characterization of the immunogenomic landscape of human BrMs by combining whole-exome/whole-genome sequencing, RNA sequencing of immune cell populations, flow cytometry, immunofluorescence staining, and tissue imaging analyses. This revealed unique TIME phenotypes in genetically distinct lung- and breast-BrMs, thereby enabling the development of personalized immunotherapies tailored by the genetic makeup of the tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Melanoma , Neoplasias Cutáneas , Adulto , Humanos , Femenino , Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Inmunoterapia , Microambiente Tumoral/genética
2.
Physiol Rep ; 10(6): e15194, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35340127

RESUMEN

The most widely used formalin test to screen antinociceptive drug candidates is still apostrophized as targeting inflammatory pain, in spite of strong opposing evidence published. In our rat skin-nerve preparation ex vivo, recording from all classes of sensory single-fibers (n = 32), 30 units were transiently excited by formaldehyde concentrations 1-100 mM applied to receptive fields (RFs) for 3 min, C and Aδ-fibers being more sensitive (1-30 mM) than Aß-fibers. From 30 mM on, ~1% of the concentration usually injected in vivo, all RFs were defunctionalized and conduction in an isolated sciatic nerve preparation was irreversibly blocked. Thus, formaldehyde, generated a state of 'anesthesia dolorosa' in the RFs in so far as after a quiescent interphase all fibers with unmyelinated terminals developed a second phase of vigorous discharge activity which correlated well in time course and magnitude with published pain-related behaviors. Sural nerve filament recordings in vivo confirmed that higher formalin concentrations (> 42 mM) have to be injected to the skin to induce this second phase of discharge. Patch-clamp and calcium-imaging confirmed TRPA1 as the primary transducer of formaldehyde (10 mM) effects on mouse sensory neurons. However, stimulated CGRP release from isolated skin of TRPA1+/+ and TRPA1-/- mice showed a convergence of the saturating concentration-response curves at 100 mM formaldehyde, which did not occur with nerve and trachea preparations. Finally, skin-nerve recordings from C and Aδ-fibers of TRPA1-/- mice revealed a massive reduction in formaldehyde (30 mM)-evoked discharge. However, the remaining activity was still biphasic, thus confirming additional unspecific excitotoxic actions of the fixative that diffuses along still excitable axons as previously published. The multiplicity of formaldehyde's actions requires extensive discussion and literature review, leading to a fundamental reevaluation of the formalin test.


Asunto(s)
Dolor , Roedores , Animales , Ratones , Dolor/inducido químicamente , Dimensión del Dolor , Ratas , Células Receptoras Sensoriales , Piel/inervación
3.
Nat Protoc ; 16(10): 4692-4721, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34462595

RESUMEN

Human tissue samples represent an invaluable source of information for the analysis of disease-specific cellular alterations and their variation between different pathologies. In cancer research, advancing a comprehensive understanding of the unique characteristics of individual tumor types and their microenvironment is of considerable importance for clinical translation. However, investigating human brain tumor tissue is challenging due to the often-limited availability of surgical specimens. Here we describe a multimodule integrated pipeline for the processing of freshly resected human brain tumor tissue and matched blood that enables analysis of the tumor microenvironment, with a particular focus on the tumor immune microenvironment (TIME). The protocol maximizes the information yield from limited tissue and includes both the preservation of bulk tissue, which can be performed within 1 h following surgical resection, as well as tissue dissociation for an in-depth characterization of individual TIME cell populations, which typically takes several hours depending on tissue quantity and further downstream processing. We also describe integrated modules for immunofluorescent staining of sectioned tissue, bulk tissue genomic analysis and fluorescence- or magnetic-activated cell sorting of digested tissue for subsequent culture or transcriptomic analysis by RNA sequencing. Applying this pipeline, we have previously described the overall TIME landscape across different human brain malignancies, and were able to delineate disease-specific alterations of tissue-resident versus recruited macrophage populations. This protocol will enable researchers to use this pipeline to address further research questions regarding the tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas , Perfilación de la Expresión Génica , Humanos , Macrófagos , Análisis de Secuencia de ARN , Microambiente Tumoral
4.
Nat Cancer ; 2(10): 1086-1101, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-35121879

RESUMEN

Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant nonmalignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. Here we demonstrate that targeting TAMs at distinct stages of the metastatic cascade using an inhibitor of colony-stimulating factor 1 receptor (CSF1R), BLZ945, in murine breast-to-brain metastasis models leads to antitumor responses in prevention and intervention preclinical trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuroinflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, blockade of CSF1R combined with inhibition of STAT5 signaling via AC4-130 led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.


Asunto(s)
Neoplasias Encefálicas , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Neoplasias Encefálicas/secundario , Genes fms , Activación de Macrófagos , Melanoma , Ratones , Receptores del Factor Estimulante de Colonias/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor de Transcripción STAT5/genética , Neoplasias Cutáneas , Microambiente Tumoral , Melanoma Cutáneo Maligno
5.
Sci Transl Med ; 12(552)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669424

RESUMEN

Tumor-associated macrophages (TAMs) and microglia (MG) are potent regulators of glioma development and progression. However, the dynamic alterations of distinct TAM populations during the course of therapeutic intervention, response, and recurrence have not yet been fully explored. Here, we investigated how radiotherapy changes the relative abundance and phenotypes of brain-resident MG and peripherally recruited monocyte-derived macrophages (MDMs) in glioblastoma. We identified radiation-specific, stage-dependent MG and MDM gene expression signatures in murine gliomas and confirmed altered expression of several genes and proteins in recurrent human glioblastoma. We found that targeting these TAM populations using a colony-stimulating factor-1 receptor (CSF-1R) inhibitor combined with radiotherapy substantially enhanced survival in preclinical models. Our findings reveal the dynamics and plasticity of distinct macrophage populations in the irradiated tumor microenvironment, which has translational relevance for enhancing the efficacy of standard-of-care treatment in gliomas.


Asunto(s)
Glioblastoma , Glioma , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Glioma/tratamiento farmacológico , Glioma/radioterapia , Humanos , Macrófagos , Ratones , Recurrencia Local de Neoplasia , Microambiente Tumoral
6.
Cell ; 181(7): 1643-1660.e17, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32470396

RESUMEN

Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.


Asunto(s)
Neoplasias Encefálicas/inmunología , Glioma/patología , Microambiente Tumoral/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioma/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/inmunología , Masculino , Microglía/metabolismo , Neutrófilos/metabolismo , Linfocitos T/metabolismo
7.
Front Oncol ; 9: 1324, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31828043

RESUMEN

Brain metastases are the most common intracranial tumor in adults and are associated with poor patient prognosis and median survival of only a few months. Treatment options for brain metastasis patients remain limited and largely depend on surgical resection, radio- and/or chemotherapy. The development and pre-clinical testing of novel therapeutic strategies require reliable experimental models and diagnostic tools that closely mimic technologies that are used in the clinic and reflect histopathological and biochemical changes that distinguish tumor progression from therapeutic response. In this study, we sought to test the applicability of magnetic resonance (MR) spectroscopy in combination with MR imaging to closely monitor therapeutic efficacy in a breast-to-brain metastasis model. Given the importance of radiotherapy as the standard of care for the majority of brain metastases patients, we chose to monitor the post-irradiation response by magnetic resonance spectroscopy (MRS) in combination with MR imaging (MRI) using a 7 Tesla small animal scanner. Radiation was applied as whole brain radiotherapy (WBRT) using the image-guided Small Animal Radiation Research Platform (SARRP). Here we describe alterations in different metabolites, including creatine and N-acetylaspartate, that are characteristic for brain metastases progression and lactate, which indicates hypoxia, while choline levels remained stable. Radiotherapy resulted in normalization of metabolite levels indicating tumor stasis or regression in response to treatment. Our data indicate that the use of MR spectroscopy in addition to MRI represents a valuable tool to closely monitor not only volumetrical but also metabolic changes during tumor progression and to evaluate therapeutic efficacy of intervention strategies. Adapting the analytical technology in brain metastasis models to those used in clinical settings will increase the translational significance of experimental evaluation and thus contribute to the advancement of pre-clinical assessment of novel therapeutic strategies to improve treatment options for brain metastases patients.

8.
PLoS One ; 12(9): e0184765, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28898277

RESUMEN

Iron-deposition is a metabolic biomarker of macrophages in both normal and pathological situations, but the presence of iron in tumor and metastasis-associated macrophages is not known. Here we mapped and quantified hemosiderin-laden macrophage (HLM) deposits in murine models of metastatic breast cancer using iron and macrophage histology, and in vivo MRI. Iron MRI detected high-iron pixel clusters in mammary tumors, lung metastasis, and brain metastasis as well as liver and spleen tissue known to contain the HLMs. Iron histology showed these regions to contain clustered macrophages identified by their common iron status and tissue-intrinsic association with other phenotypic macrophage markers. The in vivo MRI and ex vivo histological images were further processed to determine the frequencies and sizes of the iron deposits, and measure the number of HLMs in each deposit to estimate the in vivo MRI sensitivity for these cells. Hemosiderin accumulation is a macrophage biomarker and intrinsic contrast source for cellular MRI associated with the innate function of macrophages in iron metabolism systemically, and in metastatic cancer.


Asunto(s)
Hemosiderina/metabolismo , Hierro/metabolismo , Macrófagos/metabolismo , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Animales , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , Femenino , Macrófagos/patología , Imagen por Resonancia Magnética , Neoplasias Mamarias Experimentales/patología , Ratones , Metástasis de la Neoplasia
9.
J Extracell Vesicles ; 6(1): 1340745, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28804596

RESUMEN

To evaluate whether tumour-derived microvesicles (T-MV), originating from the plasma membrane, represent suitable cancer biomarkers, we isolated MV from peripheral blood samples of cancer patients with locally advanced and/or metastatic solid tumours (n = 330, including 79 head & neck cancers, 74 lung cancers, 41 breast cancers, 28 colorectal cancers and 108 with other cancer forms) and controls (n = 103). Whole MV preparations were characterised using flow cytometry. While MV carrying the tumour-associated proteins MUC1, EGFR and EpCAM were found to be enhanced in a tumour-subtype-specific way in patients' blood, expression of the matrix metalloproteinase inducer EMMPRIN was increased independent of tumour type. Higher levels of EMMPRIN+-MV correlated significantly with poor overall survival, whereas the other markers were prognostic only in specific tumour subgroups. By combining all four tumour-associated antigens, cancer patients were separated from healthy controls with an AUC of up to 0.85. Ex vivo, whole MV preparations from cancer patients, in contrast to those of controls, induced a tumour-supporting phenotype in macrophages and increased tumour cell invasion, which was dependent on the highly glycosylated isoform of EMMPRIN. In conclusion, the detection of T-MV in whole blood, even in minor amounts, is feasible with standard techniques, proves functionally relevant and correlates with clinical outcome.

10.
Front Oncol ; 7: 135, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695110

RESUMEN

Breast cancer is a heterogeneous disease and has been classified into five molecular subtypes based on gene expression profiles. Signaling processes linked to different breast cancer molecular subtypes and different clinical outcomes are still poorly understood. Aberrant regulation of Wnt signaling has been implicated in breast cancer progression. In particular Ror1/2 receptors and several other members of the non-canonical Wnt signaling pathway were associated with aggressive breast cancer behavior. However, Wnt signals are mediated via multiple complex pathways, and it is clinically important to determine which particular Wnt cascades, including their domains and targets, are deregulated in poor prognosis breast cancer. To investigate activation and outcome of the Ror2-dependent non-canonical Wnt signaling pathway, we overexpressed the Ror2 receptor in MCF-7 and MDA-MB231 breast cancer cells, stimulated the cells with its ligand Wnt5a, and we knocked-down Ror1 in MDA-MB231 cells. We measured the invasive capacity of perturbed cells to assess phenotypic changes, and mRNA was profiled to quantify gene expression changes. Differentially expressed genes were integrated into a literature-based non-canonical Wnt signaling network. The results were further used in the analysis of an independent dataset of breast cancer patients with metastasis-free survival annotation. Overexpression of the Ror2 receptor, stimulation with Wnt5a, as well as the combination of both perturbations enhanced invasiveness of MCF-7 cells. The expression-responsive targets of Ror2 overexpression in MCF-7 induced a Ror2/Wnt module of the non-canonical Wnt signaling pathway. These targets alter regulation of other pathways involved in cell remodeling processing and cell metabolism. Furthermore, the genes of the Ror2/Wnt module were assessed as a gene signature in patient gene expression data and showed an association with clinical outcome. In summary, results of this study indicate a role of a newly defined Ror2/Wnt module in breast cancer progression and present a link between Ror2 expression and increased cell invasiveness.

11.
Oncotarget ; 8(2): 3259-3273, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27965462

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells. LEF1 knockdown experiments in cell lines reveal that depending on the cellular context, LEF1 can induce pro-apoptotic signals. LEF1 can also suppress proliferation, migration and invasiveness of RMS cells both in vitro and in vivo. Furthermore, LEF1 can induce myodifferentiation of the tumor cells. This may involve regulation of other LEF1/TCF factors i.e. TCF1, whereas ß-catenin activity plays a subordinate role. Together these data suggest that LEF1 rather has tumor suppressive functions and attenuates aggressiveness in a subset of RMS.


Asunto(s)
Factor de Unión 1 al Potenciador Linfoide/metabolismo , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Apoptosis/genética , Biomarcadores de Tumor , Biopsia , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Progresión de la Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Clasificación del Tumor , Rabdomiosarcoma/genética , Análisis de Matrices Tisulares , Vía de Señalización Wnt
12.
Cell Rep ; 17(9): 2445-2459, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27840052

RESUMEN

Extensive transcriptional and ontogenetic diversity exists among normal tissue-resident macrophages, with unique transcriptional profiles endowing the cells with tissue-specific functions. However, it is unknown whether the origins of different macrophage populations affect their roles in malignancy. Given potential artifacts associated with irradiation-based lineage tracing, it remains unclear if bone-marrow-derived macrophages (BMDMs) are present in tumors of the brain, a tissue with no homeostatic involvement of BMDMs. Here, we employed multiple models of murine brain malignancy and genetic lineage tracing to demonstrate that BMDMs are abundant in primary and metastatic brain tumors. Our data indicate that distinct transcriptional networks in brain-resident microglia and recruited BMDMs are associated with tumor-mediated education yet are also influenced by chromatin landscapes established before tumor initiation. Furthermore, we demonstrate that microglia specifically repress Itga4 (CD49D), enabling its utility as a discriminatory marker between microglia and BMDMs in primary and metastatic disease in mouse and human.


Asunto(s)
Neoplasias Encefálicas/patología , Macrófagos/patología , Animales , Secuencia de Bases , Células de la Médula Ósea/patología , Neoplasias Encefálicas/genética , Linaje de la Célula , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioma/genética , Glioma/patología , Humanos , Integrina alfa4/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Microglía/patología , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo
13.
J Surg Res ; 203(1): 193-205, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27338550

RESUMEN

BACKGROUND: Wnt/ß-catenin signaling is known to play an important role in colorectal cancer (CRC). Niclosamide, a salicylamide derivative used in the treatment of tapeworm infections, targets the Wnt/ß-catenin pathway. The objective of this study was to investigate niclosamide as a therapeutic agent against CRC. METHODS: The antiproliferative effects of 1, 3, 10, and 50 µM concentrations of niclosamide on human (SW480 and SW620) and rodent (CC531) CRC cell lines were determined by MTS assay and direct cell count. The lymphoid enhancer-binding factor 1/transcription factor (LEF/TCF) reporter assay monitored the activity of Wnt signaling. Immunofluorescence staining demonstrated the expression pattern of active ß-catenin. Gene expression of canonical and noncanonical Wnt signaling components was analyzed using qRT-PCR. Western blot analysis was performed with antibodies detecting nuclear localization of ß-catenin and c-jun. RESULTS: Cell proliferation in CRC cell lines was blocked dose dependently after 12 and 24 h of incubation. The Wnt promoter activity of LEF/TCF significantly decreased with niclosamide concentrations of 10 and 50 µM after 12 h of incubation. Active ß-catenin did not shift from the nuclear to the cytosolic pool. However, canonical target genes (met, MMP7, and cyclin D1) as well as the coactivating factor Bcl9 were downregulated, whereas the noncanonical key player c-jun was clearly activated. CONCLUSIONS: Niclosamide treatment is associated with an inhibitory effect on CRC development and reduced Wnt activity. It may exert its effect by interfering with the nuclear ß-catenin-Bcl9-LEF/TCF triple-complex and by upregulation of c-jun representing noncanonical Wnt/JNK signaling. Thus, our findings warrant further research into this substance as a treatment option for patients with advanced CRC.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Niclosamida/uso terapéutico , Vía de Señalización Wnt/efectos de los fármacos , Adenocarcinoma/metabolismo , Animales , Antineoplásicos/farmacología , Biomarcadores/metabolismo , Biomarcadores de Tumor/metabolismo , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Regulación hacia Abajo , Humanos , Niclosamida/farmacología , Ratas , Ratas Endogámicas F344 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , beta Catenina/metabolismo
14.
Clin Exp Metastasis ; 33(4): 309-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26862065

RESUMEN

Liver metastasis development in breast cancer patients is common and confers a poor prognosis. So far, the prognostic significance of surgical resection and clinical relevance of biomarker analysis in metastatic tissue have barely been investigated. We previously demonstrated an impact of WNT signaling in breast cancer brain metastasis. This study aimed to investigate the value of established prognostic markers and WNT signaling components in liver metastases. Overall N = 34 breast cancer liver metastases (with matched primaries in 19/34 cases) were included in this retrospective study. Primaries and metastatic samples were analyzed for their expression of the estrogen (ER) and progesterone receptor, HER-2, Ki67, and various WNT signaling-components by immunohistochemistry. Furthermore, ß-catenin-dependent and -independent WNT scores were generated and analyzed for their prognostic value. Additionally, the influence of the alternative WNT receptor ROR on signaling and invasiveness was analyzed in vitro. ER positivity (HR 0.09, 95 % CI 0.01-0.56) and high Ki67 (HR 3.68, 95 % CI 1.12-12.06) in the primaries had prognostic impact. However, only Ki67 remained prognostic in the metastatic tissue (HR 2.46, 95 % CI 1.11-5.44). Additionally, the ß-catenin-independent WNT score correlated with reduced overall survival only in the metastasized situation (HR 2.19, 95 % CI 1.02-4.69, p = 0.0391). This is in line with the in vitro results of the alternative WNT receptors ROR1 and ROR2, which foster invasion. In breast cancer, the value of prognostic markers established in primary tumors cannot directly be translated to metastases. Our results revealed ß-catenin-independent WNT signaling to be associated with poor prognosis in patients with breast cancer liver metastasis.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias de la Mama/genética , Neoplasias Hepáticas/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/biosíntesis , Adulto , Anciano , Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Receptor alfa de Estrógeno/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Antígeno Ki-67/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Metástasis de la Neoplasia , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Vía de Señalización Wnt/genética , beta Catenina/genética
15.
PLoS One ; 10(12): e0144014, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26632845

RESUMEN

INTRODUCTION: WNT signaling is a complex process comprising multiple pathways: the canonical ß-catenin-dependent pathway and several alternative non-canonical pathways that act in a ß-catenin-independent manner. Representing these intricate signaling mechanisms through bioinformatic approaches is challenging. Nevertheless, a simplified but reliable bioinformatic WNT pathway model is needed, which can be further utilized to decipher specific WNT activation states within e.g. high-throughput data. RESULTS: In order to build such a model, we collected, parsed, and curated available WNT signaling knowledge from different pathway databases. The data were assembled to construct computationally suitable models of different WNT signaling cascades in the form of directed signaling graphs. This resulted in four networks representing canonical WNT signaling, non-canonical WNT signaling, the inhibition of canonical WNT signaling and the regulation of WNT signaling pathways, respectively. Furthermore, these networks were integrated with microarray and RNA sequencing data to gain deeper insight into the underlying biology of gene expression differences between MCF-7 and MDA-MB-231 breast cancer cell lines, representing weakly and highly invasive breast carcinomas, respectively. Differential genes up-regulated in the MDA-MB-231 compared to the MCF-7 cell line were found to display enrichment in the gene set originating from the non-canonical network. Moreover, we identified and validated differentially regulated modules representing canonical and non-canonical WNT pathway components specific for the aggressive basal-like breast cancer subtype. CONCLUSIONS: In conclusion, we demonstrated that these newly constructed WNT networks reliably reflect distinct WNT signaling processes. Using transcriptomic data, we shaped these networks into comprehensive modules of the genes implicated in the aggressive basal-like breast cancer subtype and demonstrated that non-canonical WNT signaling is important in this context. The topology of these networks can be further refined in the future by integration with complementary data such as protein-protein interactions, in order to gain greater insight into signaling processes.


Asunto(s)
Neoplasias de la Mama/metabolismo , Modelos Biológicos , Transducción de Señal , Proteínas Wnt/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Análisis de Secuencia de ARN , Proteínas Wnt/genética
16.
BMC Bioinformatics ; 16: 334, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26489510

RESUMEN

BACKGROUND: Enrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis. METHODS: We comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. RESULTS: In the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower. CONCLUSIONS: We conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both types of methods for enrichment analysis require further improvements in order to deal with the problem of pathway overlaps.


Asunto(s)
Expresión Génica , Redes y Vías Metabólicas , Modelos Genéticos , Algoritmos , Simulación por Computador , Retroalimentación Fisiológica , Humanos
17.
Oncotarget ; 6(30): 29254-67, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26299612

RESUMEN

UNLABELLED: The current approach to brain metastases resection is macroscopic removal of metastasis until reaching the glial pseudo-capsule (gross total resection (GTR)). However, autopsy studies demonstrated infiltrating metastatic cells into the parenchyma at the metastasis/brain parenchyma (M/BP)-interface. AIMS/METHODS: To analyze the astrocyte reaction and metastatic infiltration pattern at the M/BP-interface with an organotypic brain slice coculture system. Secondly, to evaluate the significance of infiltrating metastatic tumor cells in a prospective biopsy study. Therefore, after GTR, biopsies were obtained from the brain parenchyma beyond the glial pseudo-capsule and analyzed histomorphologically. RESULTS: The coculture revealed three types of cancer cell infiltration. Interestingly, the astrocyte reaction was significantly different in the coculture with a benign, neuroectodermal-derived cell line. In the prospective biopsy study 58/167 (34.7%) samples revealed infiltrating metastatic cells. Altogether, 25/39 patients (64.1%) had proven to exhibit infiltration in at least one biopsy specimen with significant impact on survival (OS) (3.4 HR; p = 0.009; 2-year OS was 6.6% versus 43.5%). Exceptionally, in the non-infiltrating cohort three patients were long-term survivors. CONCLUSIONS: Metastatic infiltration has a significant impact on prognosis. Secondly, the astrocyte reaction at the M/BP-interface is heterogeneous and supports our previous concept of the organ-specific defense against metastatic (organ-foreign) cells.


Asunto(s)
Neoplasias Encefálicas/secundario , Encéfalo/patología , Neoplasias de la Mama/patología , Carcinoma de Pulmón de Células no Pequeñas/secundario , Movimiento Celular , Neoplasias Pulmonares/patología , Anciano , Astrocitos/patología , Biomarcadores de Tumor/metabolismo , Biopsia , Encéfalo/metabolismo , Encéfalo/cirugía , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/cirugía , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Proliferación Celular , Técnicas de Cocultivo , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Células MCF-7 , Masculino , Persona de Mediana Edad , Neoplasia Residual , Neuroglía/patología , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
18.
Mol Oncol ; 9(1): 155-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25205039

RESUMEN

INTRODUCTION: Various studies have identified aberrantly expressed miRNAs in breast cancer and demonstrated an association between distinct miRNAs and malignant progression as well as metastasis. Even though tumor-associated macrophages (TAM) are known mediators of these processes, little is known regarding their miRNA expression upon education by malignant cells in vivo. METHODS: We profiled miRNA and mRNA expression of in vitro tumor-educated macrophages (TEM) by indirectly co-culturing with estrogen-receptor-positive (ER+) MCF-7 breast cancer cells. The prognostic power of the resulting miRNA list was investigated in primary breast cancer datasets and compared to other signatures. Furthermore, miRNA expression levels were correlated to mRNA expression of macrophage markers and the impact on prognosis was assessed. RESULTS: Through the evaluation of the group effects between differentially-expressed miRNAs and their target mRNAs in TEM, the power of detecting regulated miRNAs was greatly increased. The resulting list of 96 miRNAs predicts disease-free survival (DFS) in external datasets of ER+ breast cancer patients and performs well in comparison with other miRNA signatures. Clustering with the predefined miRNA list revealed a significant difference in survival between the two resulting patient groups. Furthermore, an optimized miRNA list, based on correlations with macrophages markers, proved even more capable at identifying patient clusters significantly differing in DFS. CONCLUSIONS: In vitro profiling of TEM and subsequent bioinformatic verification identified miRNAs with a high prognostic power for DFS when transferred into the clinical setting of primary breast cancer. The resulting miRNAs not only verify previously established findings but also lead to new prognostic markers. Furthermore, our data suggest that TAM contribute to the total miRNA expression profile of ER + breast cancers.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Macrófagos/metabolismo , MicroARNs/biosíntesis , ARN Mensajero/biosíntesis , Receptores de Estrógenos , Neoplasias de la Mama/patología , Técnicas de Cocultivo , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Células MCF-7 , Macrófagos/patología , Tasa de Supervivencia
19.
Trends Cell Biol ; 25(4): 198-213, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25540894

RESUMEN

The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis but also has profound effects on therapeutic efficacy. In the case of microenvironment-mediated resistance this can involve an intrinsic response, including the co-option of pre-existing structural elements and signaling networks, or an acquired response of the tumor stroma following the therapeutic insult. Alternatively, in other contexts, the TME has a multifaceted ability to enhance therapeutic efficacy. This review examines recent advances in our understanding of the contribution of the TME during cancer therapy and discusses key concepts that may be amenable to therapeutic intervention.


Asunto(s)
Carcinogénesis/genética , Neoplasias/terapia , Células del Estroma/citología , Microambiente Tumoral , Progresión de la Enfermedad , Matriz Extracelular , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/irrigación sanguínea , Transducción de Señal
20.
J Mol Cell Biol ; 7(2): 143-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25503107

RESUMEN

Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN.


Asunto(s)
Basigina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/metabolismo , Micropartículas Derivadas de Células/fisiología , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Inducción Enzimática , Femenino , Glicosilación , Humanos , Células MCF-7 , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Datos de Secuencia Molecular , Invasividad Neoplásica , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA