Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; PP2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717879

RESUMEN

Fluorescence molecular endoscopy (FME) is emerging as a "red-flag" technique with potential to deliver earlier, faster, and more personalized detection of disease in the gastrointestinal tract, including cancer, and to gain insights into novel drug distribution, dose finding, and response prediction. However, to date, the performance of FME systems is assessed mainly by endoscopists during a procedure, leading to arbitrary, potentially biased, and heavily subjective assessment. This approach significantly affects the repeatability of the procedures and the interpretation or comparison of the acquired data, representing a major bottleneck towards the clinical translation of the technology. Herein, we propose a robust methodology for FME performance assessment and quality control that is based on a novel multi-parametric rigid standard. This standard enables the characterization of an FME system's sensitivity through a single acquisition, performance comparison of multiple systems, and, for the first time, quality control of a system as a function of time and number of usages. We show the photostability of the standard experimentally and demonstrate how it can be used to characterize the performance of an FME system. Moreover, we showcase how the standard can be employed for quality control of a system. In this study, we find that the use of composite fluorescence standards before endoscopic procedures can ensure that an FME system meets the performance criteria and that components prone to performance degradation are replaced in time, avoiding disruption of clinical endoscopy logistics. This will help overcome a major barrier for the translation of FME into the clinics.

2.
PLoS Biol ; 21(11): e3002015, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983263

RESUMEN

Throughout life, hematopoietic stem cells (HSCs), residing in bone marrow (BM), continuously regenerate erythroid/megakaryocytic, myeloid, and lymphoid cell lineages. This steady-state hematopoiesis from HSC and multipotent progenitors (MPPs) in BM can be perturbed by stress. The molecular controls of how stress can impact hematopoietic output remain poorly understood. MicroRNAs (miRNAs) as posttranscriptional regulators of gene expression have been found to control various functions in hematopoiesis. We find that the miR-221/222 cluster, which is expressed in HSC and in MPPs differentiating from them, perturbs steady-state hematopoiesis in ways comparable to stress. We compare pool sizes and single-cell transcriptomes of HSC and MPPs in unperturbed or stress-perturbed, miR-221/222-proficient or miR-221/222-deficient states. MiR-221/222 deficiency in hematopoietic cells was induced in C57BL/6J mice by conditional vav-cre-mediated deletion of the floxed miR-221/222 gene cluster. Social stress as well as miR-221/222 deficiency, alone or in combination, reduced HSC pools 3-fold and increased MPPs 1.5-fold. It also enhanced granulopoisis in the spleen. Furthermore, combined stress and miR-221/222 deficiency increased the erythroid/myeloid/granulocytic precursor pools in BM. Differential expression analyses of single-cell RNAseq transcriptomes of unperturbed and stressed, proficient HSC and MPPs detected more than 80 genes, selectively up-regulated in stressed cells, among them immediate early genes (IEGs). The same differential single-cell transcriptome analyses of unperturbed, miR-221/222-proficient with deficient HSC and MPPs identified Fos, Jun, JunB, Klf6, Nr4a1, Ier2, Zfp36-all IEGs-as well as CD74 and Ly6a as potential miRNA targets. Three of them, Klf6, Nr4a1, and Zfp36, have previously been found to influence myelogranulopoiesis. Together with increased levels of Jun, Fos forms increased amounts of the heterodimeric activator protein-1 (AP-1), which is known to control the expression of the selectively up-regulated expression of the IEGs. The comparisons of single-cell mRNA-deep sequencing analyses of socially stressed with miR-221/222-deficient HSC identify 5 of the 7 Fos/AP-1-controlled IEGs, Ier2, Jun, Junb, Klf6, and Zfp36, as common activators of HSC from quiescence. Combined with stress, miR-221/222 deficiency enhanced the Fos/AP-1/IEG pathway, extended it to MPPs, and increased the number of granulocyte precursors in BM, inducing selective up-regulation of genes encoding heat shock proteins Hspa5 and Hspa8, tubulin-cytoskeleton-organizing proteins Tuba1b, Tubb 4b and 5, and chromatin remodeling proteins H3f3b, H2afx, H2afz, and Hmgb2. Up-regulated in HSC, MPP1, and/or MPP2, they appear as potential regulators of stress-induced, miR-221/222-dependent increased granulocyte differentiation. Finally, stress by serial transplantations of miR-221/222-deficient HSC selectively exhausted their lymphoid differentiation capacities, while retaining their ability to home to BM and to differentiate to granulocytes. Thus, miR-221/222 maintains HSC quiescence and multipotency by suppressing Fos/AP-1/IEG-mediated activation and by suppressing enhanced stress-like differentiation to granulocytes. Since miR-221/222 is also expressed in human HSC, controlled induction of miR-221/222 in HSC should improve BM transplantations.


Asunto(s)
MicroARNs , Factor de Transcripción AP-1 , Animales , Humanos , Ratones , Diferenciación Celular , Granulocitos , Células Madre Hematopoyéticas , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Factor de Transcripción AP-1/metabolismo
3.
Eur J Immunol ; 53(7): e2250315, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37098762

RESUMEN

In previous studies, Mott cells, an unusual form of plasma cells containing Ig-inclusion bodies, were frequently observed in peripheral lymphoid tissues in our IgM Fc receptor (FcµR)-deficient (KO) mouse strain. Because of discrepancies in the reported phenotypes of different Fcmr KO mouse strains, we here examined two additional available mutant strains and confirmed that such enhanced Mott-cell formation was a general phenomenon associated with FcµR deficiency. Splenic B cells from Fcmr KO mice clearly generated more Mott cells than those from WT mice when stimulated in vitro with LPS alone or a B-1, but not B-2, activation cocktail. Nucleotide sequence analysis of the Ig variable regions of a single IgMλ+ Mott-hybridoma clone developed from splenic B-1 B cells of Fcmr KO mice revealed the near (VH) or complete (Vλ) identity with the corresponding germline gene segments and the addition of six or five nucleotides at the VH/DH and DH/JH junctions, respectively. Transduction of an FcµR cDNA into the Mott hybridoma significantly reduced cells containing IgM-inclusion bodies with a concomitant increase in IgM secretion, leading to secreted IgM binding to FcµR expressed on Mott transductants. These findings suggest a regulatory role of FcµR in the formation of Mott cells and IgM-inclusion bodies.


Asunto(s)
Linfocitos B , Receptores Fc , Animales , Ratones , Receptores Fc/genética , Linfocitos B/metabolismo , Células Plasmáticas/metabolismo , Inmunoglobulina M/genética , Inmunoglobulina M/metabolismo
4.
Photoacoustics ; 25: 100301, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35036313

RESUMEN

Test-samples are necessary for the development of emerging imaging approaches such as optoacoustics (OA); these can be used to benchmark new labeling agents and instrumentation, or to characterize image analysis algorithms or the inversion required to form the three-dimensional reconstructions. Alginate beads (AlBes) loaded with labeled mammalian or bacterial cells provide a method of creating defined structures of controllable size and photophysical characteristics and are well-suited for both in vitro and in vivo use. Here we describe a simple and rapid method for efficient and reproducible production of AlBes with specific characteristics and show three example applications with multispectral OA tomography imaging. We show the advantage of AlBes for studying and eventually improving photo-switching OA imaging approaches. As highly defined, homogeneous, quasi point-like signal sources, AlBes might hold similar advantages for studying other agents, light-fluence models, or the impact of detection geometries on correct image formation in the near future.

5.
Nat Biotechnol ; 40(4): 598-605, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34845372

RESUMEN

Reversibly photo-switchable proteins are essential for many super-resolution fluorescence microscopic and optoacoustic imaging methods. However, they have yet to be used as sensors that measure the distribution of specific analytes at the nanoscale or in the tissues of live animals. Here we constructed the prototype of a photo-switchable Ca2+ sensor based on GCaMP5G that can be switched with 405/488-nm light and describe its molecular mechanisms at the structural level, including the importance of the interaction of the core barrel structure of the fluorescent protein with the Ca2+ receptor moiety. We demonstrate super-resolution imaging of Ca2+ concentration in cultured cells and optoacoustic Ca2+ imaging in implanted tumor cells in mice under controlled Ca2+ conditions. Finally, we show the generalizability of the concept by constructing examples of photo-switching maltose and dopamine sensors based on periplasmatic binding protein and G-protein-coupled receptor-based sensors.


Asunto(s)
Técnicas Fotoacústicas , Animales , Línea Celular , Ratones , Microscopía Fluorescente/métodos , Técnicas Fotoacústicas/métodos
6.
Theranostics ; 11(16): 7813-7828, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335966

RESUMEN

Non-invasive monitoring of hemodynamic tumor responses to chemotherapy could provide unique insights into the development of therapeutic resistance and inform therapeutic decision-making in the clinic. Methods: Here, we examined the longitudinal and dynamic effects of the common chemotherapeutic drug Taxotere on breast tumor (KPL-4) blood volume and oxygen saturation using eigenspectra multispectral optoacoustic tomography (eMSOT) imaging over a period of 41 days. Tumor vascular function was assessed by dynamic oxygen-enhanced eMSOT (OE-eMSOT). The obtained in vivo optoacoustic data were thoroughly validated by ex vivo cryoimaging and immunohistochemical staining against markers of vascularity and hypoxia. Results: We provide the first preclinical evidence that prolonged treatment with Taxotere causes a significant drop in mean whole tumor oxygenation. Furthermore, application of OE-eMSOT showed a diminished vascular response in Taxotere-treated tumors and revealed the presence of static blood pools, indicating increased vascular permeability. Conclusion: Our work has important translational implications and supports the feasibility of eMSOT imaging for non-invasive assessment of tumor microenvironmental responses to chemotherapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Hemodinámica/fisiología , Tomografía Óptica/métodos , Animales , Neoplasias de la Mama/diagnóstico por imagen , Línea Celular Tumoral , Docetaxel/farmacología , Femenino , Hemodinámica/efectos de los fármacos , Humanos , Hipoxia/metabolismo , Ratones , Ratones SCID , Oxígeno/metabolismo , Técnicas Fotoacústicas/métodos , Tomografía/métodos , Tomografía Computarizada por Rayos X/métodos , Microambiente Tumoral/fisiología
7.
EMBO Mol Med ; 13(9): e13490, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34411447

RESUMEN

The increasing worldwide prevalence of obesity, fatty liver diseases and the emerging understanding of the important roles lipids play in various other diseases is generating significant interest in lipid research. Lipid visualization in particular can play a critical role in understanding functional relations in lipid metabolism. We investigated the potential of multispectral optoacoustic tomography (MSOT) as a novel modality to non-invasively visualize lipids in laboratory mice around the 930nm spectral range. Using an obesity-induced non-alcoholic fatty liver disease (NAFLD) mouse model, we examined whether MSOT could detect and differentiate different grades of hepatic steatosis and monitor the accumulation of lipids in the liver quantitatively over time, without the use of contrast agents, i.e. in label-free mode. Moreover, we demonstrate the efficacy of using the real-time clearance kinetics of indocyanine green (ICG) in the liver, monitored by MSOT, as a biomarker to evaluate the organ's function and assess the severity of NAFLD. This study establishes MSOT as an efficient imaging tool for lipid visualization in preclinical studies, particularly for the assessment of NAFLD.


Asunto(s)
Técnicas Fotoacústicas , Tomografía , Animales , Medios de Contraste , Verde de Indocianina , Ratones , Tomografía Computarizada por Rayos X
8.
Photoacoustics ; 22: 100263, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33948433

RESUMEN

Contrast enhancement in optoacoustic (photoacoustic) imaging can be achieved with agents that exhibit high absorption cross-sections, high photostability, low quantum yield, low toxicity, and preferential bio-distribution and clearance profiles. Based on advantageous photophysical properties of croconaine dyes, we explored croconaine-based nanoparticles (CR780RGD-NPs) as highly efficient contrast agents for targeted optoacoustic imaging of challenging preclinical tumor targets. Initial characterization of the CR780 dye was followed by modifications using polyethylene glycol and the cancer-targeting c(RGDyC) peptide, resulting in self-assembled ultrasmall particles with long circulation time and active tumor targeting. Preferential bio-distribution was demonstrated in orthotopic mouse brain tumor models by multispectral optoacoustic tomography (MSOT) imaging and histological analysis. Our findings showcase particle accumulation in brain tumors with sustainable strong optoacoustic signals and minimal toxic side effects. This work points to CR780RGD-NPs as a promising optoacoustic contrast agent for potential use in the diagnosis and image-guided resection of brain tumors.

9.
Nat Cell Biol ; 23(2): 184-197, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462395

RESUMEN

The transition zones of the squamous and columnar epithelia constitute hotspots for the emergence of cancer, often preceded by metaplasia, in which one epithelial type is replaced by another. It remains unclear how the epithelial spatial organization is maintained and how the transition zone niche is remodelled during metaplasia. Here we used single-cell RNA sequencing to characterize epithelial subpopulations and the underlying stromal compartment of endo- and ectocervix, encompassing the transition zone. Mouse lineage tracing, organoid culture and single-molecule RNA in situ hybridizations revealed that the two epithelia derive from separate cervix-resident lineage-specific stem cell populations regulated by opposing Wnt signals from the stroma. Using a mouse model of cervical metaplasia, we further show that the endocervical stroma undergoes remodelling and increases expression of the Wnt inhibitor Dickkopf-2 (DKK2), promoting the outgrowth of ectocervical stem cells. Our data indicate that homeostasis at the transition zone results from divergent stromal signals, driving the differential proliferation of resident epithelial lineages.


Asunto(s)
Cuello del Útero/patología , Epitelio/patología , Homeostasis , Vía de Señalización Wnt , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Diferenciación Celular , Linaje de la Célula , Microambiente Celular , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Queratinas/metabolismo , Metaplasia , Ratones Endogámicos C57BL , Organoides/patología , Receptores Notch/metabolismo , Células Madre/patología , Células del Estroma/patología , Transcripción Genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
10.
Opt Express ; 28(24): 35427-35437, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379657

RESUMEN

Optical interrogation of tissues is broadly considered in biomedical applications. Nevertheless, light scattering by tissue limits the resolution and accuracy achieved when investigating sub-surface tissue features. Light carrying optical angular momentum or complex polarization profiles, offers different propagation characteristics through scattering media compared to light with unstructured beam profiles. Here we discuss the behaviour of structured light scattered by tissue-mimicking phantoms. We study the spatial and the polarization profile of the scattered modes as a function of a range of optical parameters of the phantoms, with varying scattering and absorption coefficients and of different lengths. These results show the non-trivial trade-off between the advantages of structured light profiles and mode broadening, stimulating further investigations in this direction.


Asunto(s)
Microscopía de Polarización/métodos , Fantasmas de Imagen , Dispersión de Radiación , Biomimética , Luz , Modelos Biológicos
11.
Cancer Res ; 80(23): 5291-5304, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32994204

RESUMEN

Understanding temporal and spatial hemodynamic heterogeneity as a function of tumor growth or therapy affects the development of novel therapeutic strategies. In this study, we employed eigenspectra multispectral optoacoustic tomography (eMSOT) as a next-generation optoacoustic method to impart high accuracy in resolving tumor hemodynamics during bevacizumab therapy in two types of breast cancer xenografts (KPL-4 and MDA-MB-468). Patterns of tumor total hemoglobin concentration (THb) and oxygen saturation (sO2) were imaged in control and bevacizumab-treated tumors over the course of 58 days (KPL-4) and 16 days (MDA-MB-468), and the evolution of functional vasculature "normalization" was resolved macroscopically. An initial sharp drop in tumor sO2 and THb content shortly after the initiation of bevacizumab treatment was followed by a recovery in oxygenation levels. Rim-core subregion analysis revealed steep spatial oxygenation gradients in growing tumors that were reduced after bevacizumab treatment. Critically, eMSOT imaging findings were validated directly by histopathologic assessment of hypoxia (pimonidazole) and vascularity (CD31). These data demonstrate how eMSOT brings new abilities for accurate observation of entire tumor responses to challenges at spatial and temporal dimensions not available by other techniques today. SIGNIFICANCE: Accurate assessment of hypoxia and vascularization over space and time is critical for understanding tumor development and the role of spatial heterogeneity in tumor aggressiveness, metastasis, and response to treatment.


Asunto(s)
Bevacizumab/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/diagnóstico por imagen , Línea Celular Tumoral , Femenino , Humanos , Ratones SCID , Neovascularización Patológica/diagnóstico por imagen , Oxígeno/metabolismo , Técnicas Fotoacústicas/métodos , Neoplasias de la Mama Triple Negativas/irrigación sanguínea , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Sci Adv ; 6(24): eaaz6293, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32582850

RESUMEN

We introduce two photochromic proteins for cell-specific in vivo optoacoustic (OA) imaging with signal unmixing in the temporal domain. We show highly sensitive, multiplexed visualization of T lymphocytes, bacteria, and tumors in the mouse body and brain. We developed machine learning-based software for commercial imaging systems for temporal unmixed OA imaging, enabling its routine use in life sciences.


Asunto(s)
Técnicas Fotoacústicas , Animales , Ratones , Técnicas Fotoacústicas/métodos , Proteínas , Programas Informáticos
13.
IEEE Trans Biomed Eng ; 67(1): 185-192, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30990172

RESUMEN

OBJECTIVE: Fluorescence molecular imaging (FMI) has emerged as a promising tool for surgical guidance in oncology, with one of the few remaining challenges being the ability to offer quality control and data referencing. This paper investigates the use of a novel composite phantom to correct and benchmark FMI systems. METHODS: This paper extends on previous work by describing a phantom design that can provide a more complete assessment of FMI systems through quantification of dynamic range and determination of spatial illumination patterns for both reflectance and fluorescence imaging. Various performance metrics are combined into a robust and descriptive "system benchmarking score," enabling not only the comprehensive comparison of different systems, but also for the first time, correction of the acquired data. RESULTS: We show that systems developed for targeted fluorescence imaging can achieve benchmarking scores of up to 70%, while clinically available systems optimized for indocyanine green are limited to 50%, mostly due to greater leakage of ambient and excitation illumination and lower resolution. The image uniformity can also be approximated and employed for image flat-fielding, an important milestone toward data referencing. In addition, we demonstrate composite phantom use in assessing the performance of a surgical microscope and of a raster-scan imaging system. CONCLUSION: Our results suggest that the new phantom has the potential to support high-fidelity FMI through benchmarking and image correction. SIGNIFICANCE: Standardization of the FMI is a necessary process for establishing good imaging practices in clinical environments and for enabling high-fidelity imaging across patients and multi-center imaging studies.


Asunto(s)
Imagen Óptica , Fantasmas de Imagen/normas , Imagen Molecular/instrumentación , Imagen Molecular/normas , Imagen Óptica/instrumentación , Imagen Óptica/normas , Estándares de Referencia
14.
Sci Rep ; 9(1): 18123, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792293

RESUMEN

Fluorescence imaging opens new possibilities for intraoperative guidance and early cancer detection, in particular when using agents that target specific disease features. Nevertheless, photon scattering in tissue degrades image quality and leads to ambiguity in fluorescence image interpretation and challenges clinical translation. We introduce the concept of capturing the spatially-dependent impulse response of an image and investigate Spatially Adaptive Impulse Response Correction (SAIRC), a method that is proposed for improving the accuracy and sensitivity achieved. Unlike classical methods that presume a homogeneous spatial distribution of optical properties in tissue, SAIRC explicitly measures the optical heterogeneity in tissues. This information allows, for the first time, the application of spatially-dependent deconvolution to correct the fluorescence images captured in relation to their modification by photon scatter. Using experimental measurements from phantoms and animals, we investigate the improvement in resolution and quantification over non-corrected images. We discuss how the proposed method is essential for maximizing the performance of fluorescence molecular imaging in the clinic.

15.
Nat Commun ; 10(1): 5056, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699983

RESUMEN

Macrophages are one of the most functionally-diverse cell types with roles in innate immunity, homeostasis and disease making them attractive targets for diagnostics and therapy. Photo- or optoacoustics could provide non-invasive, deep tissue imaging with high resolution and allow to visualize the spatiotemporal distribution of macrophages in vivo. However, present macrophage labels focus on synthetic nanomaterials, frequently limiting their ability to combine both host cell viability and functionality with strong signal generation. Here, we present a homogentisic acid-derived pigment (HDP) for biocompatible intracellular labeling of macrophages with strong optoacoustic contrast efficient enough to resolve single cells against a strong blood background. We study pigment formation during macrophage differentiation and activation, and utilize this labeling method to track migration of pro-inflammatory macrophages in vivo with whole-body imaging. We expand the sparse palette of macrophage labels for in vivo optoacoustic imaging and facilitate research on macrophage functionality and behavior.


Asunto(s)
Ácido Homogentísico/química , Microscopía Intravital/métodos , Activación de Macrófagos , Macrófagos/citología , Técnicas Fotoacústicas/métodos , Pigmentos Biológicos/química , Coloración y Etiquetado/métodos , Animales , Materiales Biocompatibles , Diferenciación Celular , Citocinas/metabolismo , Oro , Células HEK293 , Células HeLa , Humanos , L-Lactato Deshidrogenasa/metabolismo , Macrófagos/metabolismo , Melaninas , Ratones , Nanopartículas , Nanotubos
16.
Nat Commun ; 10(1): 1191, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867430

RESUMEN

Τhe morphology, physiology and immunology, of solid tumors exhibit spatial heterogeneity which complicates our understanding of cancer progression and therapy response. Understanding spatial heterogeneity necessitates high resolution in vivo imaging of anatomical and pathophysiological tumor information. We introduce Rhodobacter as bacterial reporter for multispectral optoacoustic (photoacoustic) tomography (MSOT). We show that endogenous bacteriochlorophyll a in Rhodobacter gives rise to strong optoacoustic signals >800 nm away from interfering endogenous absorbers. Importantly, our results suggest that changes in the spectral signature of Rhodobacter which depend on macrophage activity inside the tumor can be used to reveal heterogeneity of the tumor microenvironment. Employing non-invasive high resolution MSOT in longitudinal studies we show spatiotemporal changes of Rhodobacter spectral profiles in mice bearing 4T1 and CT26.WT tumor models. Accessibility of Rhodobacter to genetic modification and thus to sensory and therapeutic functions suggests potential for a theranostic platform organism.


Asunto(s)
Técnicas Biosensibles/métodos , Macrófagos/inmunología , Neoplasias/diagnóstico por imagen , Técnicas Fotoacústicas/métodos , Rhodobacter/química , Nanomedicina Teranóstica/métodos , Animales , Bacterioclorofila A/química , Bacterioclorofila A/metabolismo , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Humanos , Estudios Longitudinales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/inmunología , Rhodobacter/metabolismo , Tomografía Computarizada por Rayos X/métodos , Microambiente Tumoral/inmunología
17.
Nat Commun ; 10(1): 1114, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846699

RESUMEN

Advances in genetic engineering have enabled the use of bacterial outer membrane vesicles (OMVs) to deliver vaccines, drugs and immunotherapy agents, as a strategy to circumvent biocompatibility and large-scale production issues associated with synthetic nanomaterials. We investigate bioengineered OMVs for contrast enhancement in optoacoustic (photoacoustic) imaging. We produce OMVs encapsulating biopolymer-melanin (OMVMel) using a bacterial strain expressing a tyrosinase transgene. Our results show that upon near-infrared light irradiation, OMVMel generates strong optoacoustic signals appropriate for imaging applications. In addition, we show that OMVMel builds up intense heat from the absorbed laser energy and mediates photothermal effects both in vitro and in vivo. Using multispectral optoacoustic tomography, we noninvasively monitor the spatio-temporal, tumour-associated OMVMel distribution in vivo. This work points to the use of bioengineered vesicles as potent alternatives to synthetic particles more commonly employed for optoacoustic imaging, with the potential to enable both image enhancement and photothermal applications.


Asunto(s)
Nanopartículas , Técnicas Fotoacústicas/métodos , Animales , Proteínas de la Membrana Bacteriana Externa/química , Bioingeniería , Biopolímeros/química , Femenino , Calor/uso terapéutico , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Neoplasias Mamarias Experimentales/terapia , Melaninas/química , Ratones , Ratones Desnudos , Nanopartículas/química , Nanotecnología , Nanomedicina Teranóstica
18.
J Biomed Opt ; 22(1): 16009, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28301638

RESUMEN

Fluorescence molecular imaging (FMI) has shown potential to detect and delineate cancer during surgery or diagnostic endoscopy. Recent progress on imaging systems has allowed sensitive detection of fluorescent agents even in video rate mode. However, lack of standardization in fluorescence imaging challenges the clinical application of FMI, since the use of different systems may lead to different results from a given study, even when using the same fluorescent agent. In this work, we investigate the use of a composite fluorescence phantom, employed as an FMI standard, to offer a comprehensive method for validation and standardization of the performance of different imaging systems. To exclude user interaction, all phantom features are automatically extracted from the acquired epi-illumination color and fluorescence images, using appropriately constructed templates. These features are then employed to characterize the performance and compare different cameras to each other. The proposed method could serve as a framework toward the calibration and benchmarking of FMI systems, to facilitate their clinical translation.


Asunto(s)
Benchmarking , Microscopía Fluorescente/normas , Imagen Molecular/normas , Fantasmas de Imagen/normas , Calibración , Microscopía Fluorescente/instrumentación , Imagen Molecular/instrumentación , Imagen Óptica
19.
J Biomed Opt ; 21(9): 091309, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27304578

RESUMEN

Fluorescence imaging has been considered for over a half-century as a modality that could assist surgical guidance and visualization. The administration of fluorescent molecules with sensitivity to disease biomarkers and their imaging using a fluorescence camera can outline pathophysiological parameters of tissue invisible to the human eye during operation. The advent of fluorescent agents that target specific cellular responses and molecular pathways of disease has facilitated the intraoperative identification of cancer with improved sensitivity and specificity over nonspecific fluorescent dyes that only outline the vascular system and enhanced permeability effects. With these new abilities come unique requirements for developing phantoms to calibrate imaging systems and algorithms. We briefly review herein progress with fluorescence phantoms employed to validate fluorescence imaging systems and results. We identify current limitations and discuss the level of phantom complexity that may be required for developing a universal strategy for fluorescence imaging calibration. Finally, we present a phantom design that could be used as a tool for interlaboratory system performance evaluation.


Asunto(s)
Imagen Molecular/instrumentación , Imagen Óptica/instrumentación , Fantasmas de Imagen , Colorantes Fluorescentes , Humanos , Modelos Biológicos , Poliuretanos
20.
PLoS One ; 11(6): e0156898, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27294868

RESUMEN

Norovirus infection is the main cause of epidemic non-bacterial gastroenteritis in humans. Although human norovirus (HuNoV) infection is self-limiting, it can persist for extended periods of time in immune deficient patients. Due to the lack of robust cell culture and small animal systems, little is known about HuNoV pathogenicity. However, murine norovirus (MNV) can be propagated in cell culture and is used as a model to study norovirus infection. Several MNV are known to persist in mice. In this study, we show that the MNV strain MNV-S99 persists in wild type inbred (C57BL/6J) mice over a period of at least 5 weeks post infection. Viral RNA was detectable in the jejunum, ileum, cecum, and colon, with the highest titers in the colon and cecum. To characterize the effect of MNV-S99 on the innate immune response, Stat1 phosphorylation and IFN-ß production were analyzed and compared to the non-persistent strain MNV-1.CW3. While MNV-S99 and MNV-1.CW3 showed comparable growth characteristics in vitro, Stat1 phosphorylation and IFN-ß release is strongly decreased after infection with MNV-S99 compared to MNV-1.CW3. In conclusion, our results show that unlike MNV-1.CW3, MNV-S99 establishes a persistent infection in mice, possibly due to interfering with the innate immune response.


Asunto(s)
Infecciones por Caliciviridae/metabolismo , Interferón beta/metabolismo , Macrófagos/metabolismo , Norovirus/fisiología , Factor de Transcripción STAT1/metabolismo , Animales , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Células Cultivadas , Farmacorresistencia Viral Múltiple , Femenino , Gastroenteritis/inmunología , Gastroenteritis/metabolismo , Gastroenteritis/virología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Enfermedades de los Roedores/inmunología , Enfermedades de los Roedores/metabolismo , Enfermedades de los Roedores/virología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA