RESUMEN
Olive growing in Croatia has a long tradition and is of great economic and social impact. The present study includes a set of 108 tree samples (88 samples corresponding to 60 presumed cultivars and 20 trees of unnamed ones) collected from 27 groves in the entire olive growing area, and is the most comprehensive survey to be conducted in Croatia. The genetic diversity, relationships, and structures of olive plants were studied using eight microsatellite loci. All loci were polymorphic and revealed a total of 90 alleles. A total of 74 different genotypes were detected that were subjected to further diversity and genetic relationship studies. The Fitch-Margoliash tree and Bayesian analysis of population structure revealed a complex relationship between the identified olive genotypes, which were clustered into three gene pools, indicating different origins of Croatian olive germplasms. Excluding the redundant germplasms, 44 different genotypes among the sampled trees of well-known cultivars and 16 new local germplasms were identified. In addition, we provide the etymology of 46 vernacular names, which confirms that the vast majority of traditional Croatian cultivars have common and widespread names. The results presented herein underline the importance of safeguarding local cultivars and conducting continuous surveys.
Asunto(s)
Olea , Olea/genética , Croacia , Teorema de Bayes , Filogenia , Genotipo , Repeticiones de Microsatélite/genética , Variación GenéticaRESUMEN
A capacity to determine the provenance of high-value food products is of high scientific and economic interest. With the aim to develop a tool for geographical traceability of Croatian extra virgin olive oils (EVOO), multielement composition and 13C/12C isotope ratio in EVOO as well as the geochemistry of the associated soils were analysed in samples collected from three regions along the Croatian Adriatic coast. Soil geochemistry was shown to influence the transfer and elemental composition of EVOO. The most discriminating variables to distinguish EVOO from different regions were S, Mo, Rb, Mg, Pb, Mn, Sn, K, V and δ13C. The predictive models achieved high sensitivity and specificity, especially when carbon isotope composition was added. The results suggest that interregional geographical traceability of Croatian EVOO is possible based on matching their multielement composition with that of the soils in the provenance area.
Asunto(s)
Quimiometría , Suelo , Aceite de Oliva/química , Isótopos de Carbono/análisis , Croacia , Aceites de Plantas/análisisRESUMEN
The influence of different irrigation regimes on olive fruit morphological parameters and on the quantity and quality (marketable indices, phenolic content, fatty acid composition, and sensory profile) of virgin olive oil (VOO) obtained from the Croatian cultivar Oblica, grown on an extremely rocky and dry reclaimed karst soil, was studied over three years. Four treatments were applied: rain-fed and three treatments calculated as 50%, 75%, and 100% of the crop's irrigation requirement (Irr). Principal component analysis separated growing seasons (GS) that differed in precipitation. In the 2016 season, which had a low number of fruits per kilogram and provided a higher amount of balanced VOO with medium to intense bitterness and pungency (rain-fed treatment), the oil yield increased by irrigation (Irr 75 and Irr 100) up to 18%, while unchanged phenolics, bitterness, and pungency were observed for the VOOs obtained. In the drier GS (2017), which under rain-fed conditions had high fruit per kg, smallest fruit sizes, and lowest oil yield, and in which the VOOs had high phenolic content and intense sensory taste attributes, fruit weight, fruit sizes, and oil yield increased by 35% in all irrigation treatments, while phenols, bitterness, and pungency decreased, balancing the sensory profile of the VOOs. The results obtained here led us to conclude that the irrigation of young olives resulted in a positive effect, with the indication that an abundant water supply is more effective in drought conditions.
RESUMEN
Olive, the emblematic Mediterranean fruit crop, owns a great varietal diversity, which is maintained in ex situ field collections, such as the World Olive Germplasm Bank of Córdoba (WOGBC), Spain. Accurate identification of WOGBC, one of the world's largest collections, is essential for efficient management and use of olive germplasm. The present study is the first report of the use of a core set of 96 EST-SNP markers for the fingerprinting of 1273 accessions from 29 countries, including both field and new acquired accessions. The EST-SNP fingerprinting made possible the accurate identification of 668 different genotypes, including 148 detected among the new acquired accessions. Despite the overall high genetic diversity found at WOGBC, the EST-SNPs also revealed the presence of remarkable redundant germplasm mostly represented by synonymy cases within and between countries. This finding, together with the presence of homonymy cases, may reflect a continuous interchange of olive cultivars, as well as a common and general approach for their naming. The structure analysis revealed a certain geographic clustering of the analysed germplasm. The EST-SNP panel under study provides a powerful and accurate genotyping tool, allowing for the foundation of a common strategy for efficient safeguarding and management of olive genetic resources.