Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 19(7): e11164, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37219487

RESUMEN

Phosphorylation is a ubiquitous post-translation modification that regulates protein function by promoting, inhibiting or modulating protein-protein interactions. Hundreds of thousands of phosphosites have been identified but the vast majority have not been functionally characterised and it remains a challenge to decipher phosphorylation events modulating interactions. We generated a phosphomimetic proteomic peptide-phage display library to screen for phosphosites that modulate short linear motif-based interactions. The peptidome covers ~13,500 phospho-serine/threonine sites found in the intrinsically disordered regions of the human proteome. Each phosphosite is represented as wild-type and phosphomimetic variant. We screened 71 protein domains to identify 248 phosphosites that modulate motif-mediated interactions. Affinity measurements confirmed the phospho-modulation of 14 out of 18 tested interactions. We performed a detailed follow-up on a phospho-dependent interaction between clathrin and the mitotic spindle protein hepatoma-upregulated protein (HURP), demonstrating the essentiality of the phospho-dependency to the mitotic function of HURP. Structural characterisation of the clathrin-HURP complex elucidated the molecular basis for the phospho-dependency. Our work showcases the power of phosphomimetic ProP-PD to discover novel phospho-modulated interactions required for cellular function.


Asunto(s)
Biblioteca de Péptidos , Proteómica , Humanos , Fosforilación , Clatrina
2.
Anal Biochem ; 663: 115017, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526023

RESUMEN

Low affinity and transient protein-protein interactions, such as short linear motif (SLiM)-based interactions, require dedicated experimental tools for discovery and validation. Here, we evaluated and compared biotinylated peptide pulldown and protein interaction screen on peptide matrix (PRISMA) coupled to mass-spectrometry (MS) using a set of peptides containing interaction motifs. Eight different peptide sequences that engage in interactions with three distinct protein domains (KEAP1 Kelch, MDM2 SWIB, and TSG101 UEV) with a wide range of affinities were tested. We found that peptide pulldown can be an effective approach for SLiM validation, however, parameters such as protein abundance and competitive interactions can prevent the capture of known interactors. The use of tandem peptide repeats improved the capture and preservation of some interactions. When testing PRISMA, it failed to provide comparable results for model peptides that successfully pulled down known interactors using biotinylated peptide pulldown. Overall, in our hands, we find that albeit more laborious, biotin-peptide pulldown was more successful in terms of validation of known interactions. Our results highlight that the tested affinity-capture MS-based methods for validation of SLiM-based interactions from cell lysates are suboptimal, and we identified parameters for consideration for method development.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Péptidos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Péptidos/química , Espectrometría de Masas/métodos , Cromatografía de Afinidad
3.
Mol Syst Biol ; 18(1): e10584, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044719

RESUMEN

Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide-phage display library that tiles all disordered regions of the human proteome and allows the screening of ~ 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)-binding domains and confirmed the quality of the produced data by complementary biophysical or cell-based assays. Finally, we show how the amino acid resolution-binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.


Asunto(s)
Proteoma , Proteómica , Sitios de Unión , Humanos , Biblioteca de Péptidos , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Proteoma/genética , Proteoma/metabolismo
4.
Biochem J ; 479(1): 1-22, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34989786

RESUMEN

Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Sitios de Unión , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Especificidad por Sustrato
5.
Nat Commun ; 12(1): 6761, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799561

RESUMEN

Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.


Asunto(s)
Factores de Integración del Huésped/metabolismo , SARS-CoV-2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Helicasas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral/fisiología
6.
Sci Signal ; 14(665)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436498

RESUMEN

The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin ß3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 µ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin ß3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/fisiología , COVID-19/virología , Integrina beta3/fisiología , Receptores Virales/fisiología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , Internalización del Virus , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Autofagia/fisiología , Endocitosis/fisiología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Integrina beta3/química , Integrina beta3/genética , Modelos Moleculares , Pandemias , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/fisiología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Señales de Clasificación de Proteína/genética , Señales de Clasificación de Proteína/fisiología , Receptores Virales/química , Receptores Virales/genética , SARS-CoV-2/genética
7.
Proc Natl Acad Sci U S A ; 117(39): 24294-24304, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929026

RESUMEN

The notion that protein function is allosterically regulated by structural or dynamic changes in proteins has been extensively investigated in several protein domains in isolation. In particular, PDZ domains have represented a paradigm for these studies, despite providing conflicting results. Furthermore, it is still unknown how the association between protein domains in supramodules, consitituting so-called supertertiary structures, affects allosteric networks. Here, we experimentally mapped the allosteric network in a PDZ:ligand complex, both in isolation and in the context of a supramodular structure, and show that allosteric networks in a PDZ domain are highly dependent on the supertertiary structure in which they are present. This striking sensitivity of allosteric networks to the presence of adjacent protein domains is likely a common property of supertertiary structures in proteins. Our findings have general implications for prediction of allosteric networks from primary and tertiary structures and for quantitative descriptions of allostery.


Asunto(s)
Proteínas/química , Regulación Alostérica , Cinética , Ligandos , Mutación , Dominios PDZ , Conformación Proteica , Proteínas/genética , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA