Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(7): e4998, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38888487

RESUMEN

Knotted proteins, although scarce, are crucial structural components of certain protein families, and their roles continue to be a topic of intense research. Capitalizing on the vast collection of protein structure predictions offered by AlphaFold (AF), this study computationally examines the entire UniProt database to create a robust dataset of knotted and unknotted proteins. Utilizing this dataset, we develop a machine learning (ML) model capable of accurately predicting the presence of knots in protein structures solely from their amino acid sequences. We tested the model's capabilities on 100 proteins whose structures had not yet been predicted by AF and found agreement with our local prediction in 92% cases. From the point of view of structural biology, we found that all potentially knotted proteins predicted by AF can be classified only into 17 families. This allows us to discover the presence of unknotted proteins in families with a highly conserved knot. We found only three new protein families: UCH, DUF4253, and DUF2254, that contain both knotted and unknotted proteins, and demonstrate that deletions within the knot core could potentially account for the observed unknotted (trivial) topology. Finally, we have shown that in the majority of knotted families (11 out of 15), the knotted topology is strictly conserved in functional proteins with very low sequence similarity. We have conclusively demonstrated that proteins AF predicts as unknotted are structurally accurate in their unknotted configurations. However, these proteins often represent nonfunctional fragments, lacking significant portions of the knot core (amino acid sequence).


Asunto(s)
Bases de Datos de Proteínas , Aprendizaje Automático , Modelos Moleculares , Proteínas , Proteínas/química , Proteínas/genética , Conformación Proteica , Secuencia de Aminoácidos
2.
Sci Rep ; 13(1): 22895, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129478

RESUMEN

Argonaute proteins are instrumental in regulating RNA stability and translation. AGO2, the major mammalian Argonaute protein, is known to primarily associate with microRNAs, a family of small RNA 'guide' sequences, and identifies its targets primarily via a 'seed' mediated partial complementarity process. Despite numerous studies, a definitive experimental dataset of AGO2 'guide'-'target' interactions remains elusive. Our study employs two experimental methods-AGO2 CLASH and AGO2 eCLIP, to generate thousands of AGO2 target sites verified by chimeric reads. These chimeric reads contain both the AGO2 loaded small RNA 'guide' and the target sequence, providing a robust resource for modeling AGO2 binding preferences. Our novel analysis pipeline reveals thousands of AGO2 target sites driven by microRNAs and a significant number of AGO2 'guides' derived from fragments of other small RNAs such as tRNAs, YRNAs, snoRNAs, rRNAs, and more. We utilize convolutional neural networks to train machine learning models that accurately predict the binding potential for each 'guide' class and experimentally validate several interactions. In conclusion, our comprehensive analysis of the AGO2 targetome broadens our understanding of its 'guide' repertoire and potential function in development and disease. Moreover, we offer practical bioinformatic tools for future experiments and the prediction of AGO2 targets. All data and code from this study are freely available at https://github.com/ML-Bioinfo-CEITEC/HybriDetector/ .


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ARN Ribosómico , ARN de Transferencia , Mamíferos/metabolismo
3.
Nucleic Acids Res ; 51(21): 11706-11716, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37850645

RESUMEN

The evolutionarily conserved DNA repair complex Ku serves as the primary sensor of free DNA ends in eukaryotic cells. Its rapid association with DNA ends is crucial for several cellular processes, including non-homologous end joining (NHEJ) DNA repair and telomere protection. In this study, we conducted a transient kinetic analysis to investigate the impact of the SAP domain on individual phases of the Ku-DNA interaction. Specifically, we examined the initial binding, the subsequent docking of Ku onto DNA, and sliding of Ku along DNA. Our findings revealed that the C-terminal SAP domain of Ku70 facilitates the initial phases of the Ku-DNA interaction but does not affect the sliding process. This suggests that the SAP domain may either establish the first interactions with DNA, or stabilize these initial interactions during loading. To assess the biological role of the SAP domain, we generated Arabidopsis plants expressing Ku lacking the SAP domain. Intriguingly, despite the decreased efficiency of the ΔSAP Ku complex in loading onto DNA, the mutant plants exhibited full proficiency in classical NHEJ and telomere maintenance. This indicates that the speed with which Ku loads onto telomeres or DNA double-strand breaks is not the decisive factor in stabilizing these DNA structures.


Asunto(s)
Reparación del ADN , Autoantígeno Ku , ADN/genética , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Cinética , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo
4.
Genes (Basel) ; 13(12)2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36553590

RESUMEN

The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.


Asunto(s)
Aprendizaje Profundo , MicroARNs , Biología Computacional/métodos , MicroARNs/genética , MicroARNs/metabolismo , Algoritmos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
5.
Front Genet ; 11: 568546, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193663

RESUMEN

G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures that are known to play a role in a wide spectrum of genomic functions, such as DNA replication and transcription. The classical understanding of G4 structure points to four variable length guanine strands joined by variable length nucleotide stretches. Experiments using G4 immunoprecipitation and sequencing experiments have produced a high number of highly probable G4 forming genomic sequences. The expense and technical difficulty of experimental techniques highlights the need for computational approaches of G4 identification. Here, we present PENGUINN, a machine learning method based on Convolutional neural networks, that learns the characteristics of G4 sequences and accurately predicts G4s outperforming state-of-the-art methods. We provide both a standalone implementation of the trained model, and a web application that can be used to evaluate sequences for their G4 potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...